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Abstract

Testing for unequal variances is usually performed in order to check the validity of the
assumptions that underlie standard tests for differences between means (the t-test and anova).
However, existing methods for testing for unequal variances (Levene's test and Bartlett's test) are
notoriously non-robust to normality assumptions, especially for small sample sizes. Moreover,
although these methods were designed to deal with one hypothesis at a time, modern applications
(such as to microarrays and fMRI experiments) often involve parallel testing over a large number
of levels (genes or voxels). Moreover, in these settings a shift in variance may be biologically
relevant, perhaps even more so than a change in the mean. This paper proposes a parsimonious
model for parallel testing of the equal variance hypothesis. It is designed to work well when the
number of tests is large; typically much larger than the sample sizes. The tests are implemented
using an empirical Bayes estimation procedure which `borrows information' across levels. The
method is shown to be quite robust to deviations from normality, and to substantially increase the
power to detect differences in variance over the more traditional approaches even when the
normality assumption is valid.
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1 Introduction and Motivation
Research questions are often framed in terms of the effect a treatment has on a
response. When comparing two conditions (say control and treatment) the question
is typically interpreted in terms of the difference between the two means. When
the response is continuous, the most widely-used test to detect the effect of the
treatment is the two-sample t-test. In this context, a test for unequal variances can
be performed to assess the validity of the equal variance assumption. Unlike the
t-test, tests for equality of variances are notoriously non-robust, as highlighted by
George Box’s famous quote, “To make the preliminary test on variances is rather
like putting to sea in a rowing boat to find out whether conditions are sufficiently
calm for an ocean liner to leave port!” (Box, 1953). Reviews of the literature on
testing equality of variances can be found in Boos and Brownie (1989), Boos and
Brownie (2004) and Gastwirth et al. (2010).

Increasingly, however, there are new insights that suggest that biological
variance plays an important role in determining cellular and organismal processes.
This article is concerned with problems in which testing for unequal variances is
of scientific importance in its own right. Furthermore, the focus is on situations in
which a large number of parallel tests are conducted. A parsimonious model and
empirical Bayes estimation procedure is developed that ‘borrows strength’ across
the levels being tested. This results not only in increased power over standard tests
when the normality assumption holds, but also in substantially improved perfor-
mance when it does not. The wide applicability of the approach is illustrated us-
ing four different types of data sets: gene expression, gene methylation, functional
Magnetic Resonance Imaging (fMRI), and metabolomics data. In these settings
changes in the variance under the treatment are often biologically relevant. More-
over, failing to account for unequal variances may undermine the performance of
methods for detecting for changes in the mean.

As a specific example, consider a simple Pavlovian-type learning exper-
iment in which the response is measured in terms of volume of blood flowing
through voxels in the brain. Both control and treatment groups receive a simple
visual signal in regular intervals. The subjects in the treatment group also receive
an auditory stimulus in addition to the visual signal. Since the stimulus does not
require complicated cognitive processing, it is conceivable that the overall mean re-
sponse levels will not differ between the groups. However, in the treatment group,
in preparation for the audio signal relevant areas in the brain might have smaller
variability, to ensure the availability of the necessary level of blood for the antici-
pated task. Similarly, areas not involved in processing the audio signal might exhibit
increased variability among the treatment subjects.
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Variation, in genetic and phenotypic terms, has been thought to be a com-
ponent of population fitness and adaptability. One way to interpret the association
between expression variance and phenotype is to consider changes in pathways.
If the genes in a particular pathway have very low variance, a natural interpreta-
tion is that those genes are highly constrained. Ho et al. (2008) report that they
“found that changes in expression variability are associated with changes in co-
expression patterns. Therefore, differential variability is potentially an important
manifestation of changes in gene regulation.” Hansen et al. (2011) say that “the in-
creased across-sample variability in methylation within the cancer samples of each
tumor type compared to normal was even more striking than the differences in mean
methylation.” Other recent examples where biological sources of variation play an
important role in determining cellular and organismal processes can be found in
Levsky et al. (2002), Ozbudak et al. (2002), Ravasi et al. (2002), Colman-Lerner
et al. (2005), Cai et al. (2006), Mar et al. (2006), Manolio et al. (2009), Eichler et al.
(2010), Feinberg and Irizarry (2010), Mar et al. (2011), and Marko et al. (2011).
The recent methodology proposed by Mar et al. (2011) for assessing the variance
of gene expression uses a one at a time analysis of the coefficient of variation. Mar
et al. (2011) compute the coefficient of variation for each gene by dividing the stan-
dard deviation of its expression measures across a sample population by its average
expression. They then designate low variance genes as those falling below the lower
25th percentile of the genome-wide coefficient of variation distribution based on all
donors and high variance genes as those above the 75th percentile; those genes in
the range between the 25th and 75th percentile they refer to as the mid variability
gene set.

In the microarray context it is now widely recognized that methods that bor-
row strength across genes, by assuming that the gene-specific variances come from
a common distribution, are more powerful for detecting mean treatment effects
(Smyth, 2004; Bar et al., 2010; Hwang and Liu, 2010). However, these methods
all assume variance homogeneity across conditions. This article develops a new
model-based approach to parallel testing for unequal variances that complements
the existing methods for detecting changes in the mean. Although the methodology
can be applied in a variety of settings, for simplicity of exposition we use termi-
nology from the microarray literature, and so the parallel tests concern variability
in gene-specific expression in arrays based on samples from control and treatment
groups.

Our model assumes that the ratio of the sample variances from the control
and treatment groups arises from a three components mixture: a null component
in which the ratio is proportional to an F-statistic; and two non-null groups repre-
senting inflated and deflated variance in the treatment group relative to the control.
The three component mixture is identified by a latent multinomial random variable
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which is treated as missing data when fitting the model via the EM algorithm. Two
variants of the model are considered: one in which the inflation/deflation factors are
constant across all the parallel tests; and one in which they are assumed to come
from a lognormal distribution. Genes are declared as non-null if their posterior null
probability is less than a predefined threshold. Alternatively, frequentist inference
can be conducted by controlling the false discovery rate using the estimated null
distribution.

Our approach to determining high and low variance is in line with a grow-
ing literature on empirical Bayesian analysis of high dimensional data (see Efron,
2008 and Bar et al., 2010). The hierarchical nature of our method yields shrinkage
estimation which results in high power and accuracy, while maintaining a low false
discovery rate. Furthermore, we show in Section 5 that the inference based on our
approach is quite robust to deviations from normality assumptions.

The paper is organized as follows. The mixture model is defined in Section
2. Section 3 outlines the details of the EM algorithm. The empirical Bayes and
frequentist inference procedures are described in Section 4. A simulation study
demonstrating the improved power, robustness, and accuracy of the method relative
to ‘one gene at a time’ approach is discussed in Section 5. Section 6 presents results
from four case studies and some concluding remarks are given in Section 7.

2 The Mixture Model
Denote the (normalized) response for gene g in array j under condition i by yi jg,
and suppose that, given the gene-specific variances, σ2

1g and σ2
2g,

yi jg ∼ N(µig,σ2
ig) (1)

independently, for all i, j and g, where i = 1 for arrays in the control group and
i = 2 for the treatment group, j = 1, . . . ,nig, and g = 1, . . . ,G. Typically G is in the
hundreds or thousands, whereas the sample sizes, nig, are much smaller, often only
in the single digits.

The sample variance for gene g in condition i is given by

s2
ig =

nig

∑
j=1

(yi jg − ȳi·g)
2/dig , (2)

where dig = nig − 1. It follows from the normality assumption (1) that the ratio of
variances in the control and treatment samples is proportional to a central F-statistic;
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that is,

rg|ρg ∼ ρg
χ2

d2g
/d2g

χ2
d1g

/d1g
, (3)

where rg = s2
2g/s2

1g and ρg = σ2
2g/σ2

1g. In order to classify the genes as having the
same, inflated or deflated variance under treatment we suppose that each ratio, ρg,
g = 1, . . . ,G, is drawn from a three components mixture with probability vector,
ppp = (p0, p1, p2). Associated with each gene is a trivariate latent indicator vector
δδδ g = (δ0g,δ1g,δ2g) distributed as multinomial(1, ppp) which determines whether the
variance in the treatment group is null, inflated or deflated with respect to the control
group. More specifically,

ρg|δg,λg ∼ τλ δ1g−δ2g
g , (4)

where λg > 0 is a gene-specific inflation/deflation factor, and the parameter τ allows
for the incorporation of fixed covariate effects into the model. In the simplest case,
with no covariates, τ represents a constant multiplicative difference between the
variances in the control and treatment groups which is often noticeable in real data.
For example, in fMRI data the stimulus presented to the treatment group may affect
subjects’ overall brain activity, and not just regions in the brain that are associated
with the task.

We consider two variants of the model: a fixed inflation factor model in
which λg ≡ λ , where λ is constant across all genes; and a random inflation factor
model in which the λg’s are assumed to come from a lognormal distribution. These
assumptions both lead to inferences about the variance ratios that borrow strength
across the genes, resulting in greater power to detect inflated or deflated variance
under treatment.

The assumption of a lognormal distribution for λg can be motivated from
the perspective of classical shrinkage estimation (James and Stein, 1961) and its
connection to BLUPs arising in linear mixed models (Efron and Morris, 1975).
Specifically, consider the variable xg ≡ log(rg). Equations (3) and (4) imply that

xg = logτ +(δ1g −δ2g) logλg +ξ2g −ξ1g (5)

where ξig = log(χ2
dig
/dig), i= 1,2, have known mean and variance given by E(ξig)=

ψ(dig/2)− log(dig/2) and Var(ξig) = ψ ′(dig/2), ψ and ψ ′ being the digamma
and trigamma functions, respectively. Using independence and applying the delta
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method implies that ξ2g − ξ1g is approximately normal with mean and variance
given by

θg = ψ(d2g/2)− log(d2g/2)−ψ(d1g/2)+ log(d1g/2)

and

κ2
g = ψ ′(d1g/2)+ψ ′(d2g/2) .

Thus, if logλg ∼ N(θ ,κ2), equation (5) has the form of a mixture of linear mixed
models, and shrinkage estimates of individual components of logλg can be esti-
mated by their posterior expectations given the observed xg, g = 1, . . . ,G (Efron
and Morris, 1975).

3 The EM Algorithm

3.1 Complete data log-likelihood

Regarding the latent indicator vector δδδ g as missing data, we obtain the complete
data log-likelihood to implement the EM algorithm.

For the fixed inflation factor model where λg ≡ λ , the complete data log
likelihood (omitting terms that do not depend on unknown parameters) is obtained
directly from the identities (3) and (4) as

G

∑
g=1

ℓF(rg) =
G

∑
g=1

{
2

∑
k=0

δkg log pk +
d1g

2
log
(

τλ δ1g−δ2g
)

−
d1g +d2g

2
log
(

τλ δ1g−δ2g + rgd2g/d1g

)}
=

G

∑
g=1

2

∑
k=0

δkg log pk +
G

∑
g=1

d1g

2
{

logτ +(δ1g −δ2g) logλ
}

−
G

∑
g=1

d1g +d2g

2
{

δ0g log
(
τ + rgd2g/d1g

)
+δ1g log

(
τλ + rgd2g/d1g

)
+ δ2g log

(
τ/λ + rgd2g/d1g

)}
. (6)

5

Bar et al.: Parallel Testing for Unequal Variances



For the random inflation factor model, using the normal approximation to
the log chi-squared distribution, and the mixed linear model representation in (5),
we obtain

G

∑
g=1

ℓR(xg) =
G

∑
g=1

2

∑
k=0

δkg log pk −
1
2

G

∑
g=1

log[(δ1g −δ2g)
2κ2 +κ2

g )]

−1
2

G

∑
g=1

[xg −µg − (δ1g −δ2g)θ ]2

(δ1g −δ2g)2κ2 +κ2
g

=
G

∑
g=1

2

∑
k=0

δkg log pk (7)

−1
2

G

∑
g=1

[
δ0g log(κ2

g )+δ1g log(κ2 +κ2
g )+δ2g log(κ2 +κ2

g )
]

−1
2

G

∑
g=1

[
δ0g

[xg −µg]
2

κ2
g

+δ1g
[xg −µg −θ ]2

κ2 +κ2
g

+δ2g
[xg −µg +θ ]2

κ2 +κ2
g

]
,

where µg = logτ+θg is the expected value of xg in the null case (i.e. when δ0g = 1).

3.2 The E-step

The E-step of the EM algorithm involves taking the expectation of the complete
data log-likelihood conditional on the observed data. In the context of our mixture
model, strict implementation of the E-step requires evaluating the expectation of all
components of the complete data log-likelihood that are functions of the latent indi-
cator, δδδ g, g = 1, . . . ,G. In particular, if the complete data likelihood is linear in the
latent indicator, as in (6) the E-step reduces to evaluating the posterior probabilities,

pr(δkg = 1|rg) =
pkLk(rg)

∑2
l=0 pl Ll(rg)

, (8)

at the current (iteration) parameter estimates, where Lk(rg) = exp{ℓF(rg)} with
δkg = 1. The same argument holds for the random inflation factor model with ℓR
replacing ℓF in the posterior probability formula (8).

3.3 The M-Step

Let φ denote the complete vector of model parameters, and let

Q(φ,φ(t)) = Eφ(t) [ℓ({rg})]
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denote the Q-function obtained by substituting the estimated posterior probabilities,
δ̂ (t)

kg , after iteration t in (6) or (7). The M-step at the (t + 1)st iteration involves
maximization of Q(φ,φ(t)) with respect to each parameter in φ . That is,

φ(t+1) = argmax
φ

Q(φ,φ(t)) .

Maximization of the Q-function with respect to the multinomial probabil-
ities is the same for both fixed and random inflation factor models, the update at
iteration t +1 being

p̂(t+1)
k =

1
G

G

∑
g=1

δ̂ (t)
kg . (9)

The other parameters updates depend on the assumptions regarding the inflation
factors.

3.3.1 M-Step: Fixed Inflation Factor

Differentiating (6) results in the following update equations for τ and λ , respec-
tively:

G

∑
g=1

d1gd2g

(
rg − τλ δ̂1g−δ̂2g

)
d2grg +d1gτλ δ̂1g−δ̂2g

= 0, (10)

and

G

∑
g=1

d1gd2g(δ̂1g − δ̂2g)
(

rg − τλ δ̂1g−δ̂2g

)
d2grg +d1gτλ δ̂1g−δ̂2g

= 0 . (11)

If δ̂1g = δ̂2g = 0 for all g, set λ̂ = 1.

3.3.2 M-Step: Random Inflation Factor

Differentiating (7) results in the update equations for τ , θ and κ2:

log τ̂ =
∑G

g=1

[
δ0g(xg−θg)

κ2
g

+
(δ1g+δ2g)(xg−θg)+(δ2g−δ1g)θ

κ2+κ2
g

]
∑G

g=1

(
δ0g
κ2

g
+

δ1g+δ2g
κ2+κ2

g

) , (12)
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θ̂ =
∑G

g=1(δ1g −δ2g)
xg−µg
κ2+κ2

g

∑G
g=1

δ1g+δ2g
κ2+κ2

g

, (13)

and

κ̂2 =
∑G

g=1 δ1g
[
(xg −µg −θ)2 −κ2

g
]
+δ2g

[
(xg −µg +θ)2 −κ2

g
]

∑G
g=1(δ1g +δ2g)

, (14)

and θ̂ = κ̂ = 0 if δ̂1g = δ̂2g = 0 for all g.

4 Inference

4.1 The Frequentist and Empirical Bayes Procedures

Our model based approach allows us to assess the null status of a gene, either using a
frequentist procedure based on false discovery rate (FDR, Benjamini and Hochberg,
1995); or using empirical Bayes inference via the posterior null probabilities.

Under the fixed inflation factor model the statistic, rg/τ has an F-distribution
under the null. In this case the frequentist p-value for gene g is equal to pr(τF <
rg,obs) if rg/τ < 1 and pr(τF > rg,obs) if rg/τ > 1, where F ∼ F(d2g,d1g). For
the random inflation factor model the corresponding p-value is given by pr{|Z| >
(xg,obs −µg)/κg}, where Z is a standard normal variate.

The empirical Bayes approach is to classify genes based on the estimated
posterior probabilities, δ̂kg, k = 0,1,2. Thus, a gene is declared non-null if either
δ̂1g or δ̂2g exceed a given threshold.

4.2 Shrinkage Estimation

For the random factor model, the posterior probability of δ1g = 1 can be rewritten
in the form

pr(δ1g = 1|xg) =
1

p0·L0(xg)
p1·L1(xg)

+1+ p2·L2(xg)
p1·L1(xg)

,
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where the ratio, L0/L1, is given by

L0(xg)

L1(xg)
=

(2πκ2
g )

−1/2 exp
{
−(xg −µg)

2/2κ2
g
}

[2π(κ2 +κ2
g )]

−1/2 exp
{
−(xg −µg −θ)2/2(κ2 +κ2

g )
}

= (1− cg)
−1/2 exp

{
−1

2
[cg(xg −µg)+(1− cg)θ ]2

cgκ2
g

+
θ 2

2κ2

}

∝ (1− cg)
−1/2 exp

{
−1

2
T 2

g

}
, (15)

with the constant of proportionality being exp(θ 2/2κ2), and where

cg =
1

κ2
g

(
1

κ2
g
+

1
κ2

)−1

=
1

1+κ2
g/κ2 .

Similarly, for the other likelihood ratio we have

L2(xg)

L1(xg)
= exp

{
−

2(xg −µg)θ
κ2 +κ2

g

}
. (16)

Suppose that θ > 0, so that δ1g is an indicator of inflated variance. Then,
L2/L1 converges to zero as xg increases to infinity and so, in the limit, δ1g is solely
a function of the ratio, L0/L1, and hence of the statistic, Tg. On the other hand,
L2/L1 converges to infinity as xg decreases to −∞ so that δ1g converges to zero.
This makes sense since, in this case, it is highly unlikely that the gene is in the
inflated variance non-null group. Parallel arguments can be made regarding δ2g.

Note that xg−µg is the observed difference between the log variances in the
control and treatment groups for gene g (after adjusting for the covariate effects),
and θ represents the expected difference if the gene has inflated variance under
treatment (assuming θ > 0). Thus, the numerator of the statistic, Tg, has the form
of classical James-Stein shrinkage estimator of difference in the log variances, with
the amount of shrinkage of the observed difference towards θ determined by the
ratio of variances κ2

g/κ2.

5 Simulation Results
We compared the performance of the two estimation procedures in terms of power,
accuracy, and false discovery rate with the ‘one hypothesis at a time’ approach, us-
ing the Brown and Forsythe (1974) median centered robust version of Levene’s test
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Figure 1: Power as a function of the inflation factor, λ . The solid and dashed lines
correspond to the random and fixed factor models, respectively. The thick and thin
lines correspond to the normal and lognormal data, respectively.

(Levene, 1960). We chose the Levene test since previous studies have shown it to be
relatively robust and powerful (Gastwirth et al., 2010). We also compared our ap-
proach with other well-known ‘one at a time’ methods, like Bartlett’s test (Bartlett,
1937), although those comparisons are not reported here. The traditional methods
that do not borrow strength across levels lack power, especially when the sample
sizes are small. See Boos and Brownie (2004) and Boos and Brownie (1989) for
comprehensive reviews of ‘one at a time’ methods and their power and robustness
properties.

In our simulations we varied the sample sizes, ranging from ni = 2 to ni =
30, and allowed for the two groups to have different sample sizes. The inflation
factor varied in the range 2 ≤ λ ≤ 10, and we used a variety of underlying distri-
butions, including normal, Cauchy, lognormal, and exponential, in order to assess
robustness. Each simulation configuration was repeated 20 times, and the results
are reported in terms of the average of the 20 experiments. The configurations re-
ported in this paper involve sample sizes, n1 = 4 and n2 = 7, G = 2000 genes with
a 10% inflated-variance subset (p = 0.1). The underlying distributions of the re-
sponses, yi jg, are N(0,0.25), LN(0,0.25), and Cauchy distribution, with location
and scale parameters equal to 0 and 0.1, respectively. The results reported here are
representative of the wide range of simulation studies that we performed. The soft-
ware used to perform this analysis is available from the authors. It will be released
as an update to the lemma package (Bar and Schifano, 2010) shortly.

Figure 1 shows the power of the random factor (solid line) and the fixed
factor (dashed line) approaches for two configurations; one, for normal data, ynull ∼
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Figure 2: Accuracy as a function of the inflation factor, λ . The solid and dashed
lines correspond to the random and fixed factor models, respectively. The thick and
thin lines correspond to the normal and lognormal data, respectively.

N(0,0.25) (thick lines), and one for lognormal data, ynull ∼ LN(0,0.25) (thin lines).
To generate these power plots we used the frequentist-type inference, and controlled
for false discovery rate at the 5% level. The ‘one hypothesis at a time’ approach
using the Levene test had zero discoveries for any λ (after applying the Benjamini-
Hochberg adjustment). The ‘random inflation factor’ approach is more powerful
than the ‘fixed factor’ procedure, in both configurations. As expected, as the true
inflation factor increases both procedures become more powerful. Also, the power
is higher when the underlying data are normally distributed.

Of course, in addition to power we would like the methods to have high
level of accuracy (the total percentage of correct classifications, i.e., 100×(True
Positive + True Negative)/G). Figure 2 shows (for normal and lognormal data)
that both methods are quite accurate, and their accuracy increases as the inflation
factor increases. In contrast, the conservative one-at-a-time approach, as well as the
mean-based methods (not shown in the plot), yield approximately constant level of
accuracy (in this case, 0.9, since by not rejecting any test, they correctly classify
the null subset.)

ROC curves (of the average true positive rate versus the false positive rate)
are given in Figure 3 for the normal, lognormal, and Cauchy data when the inflation
factor is λ = 4. The three ROC plots are confined to a false positive rate of less than
or equal to 0.2 since higher error rates than this would clearly be undesirable. In all
cases the random factor model has the best performance. For example, when the
data are normal, at a false positive level of 0.05 the average true positive rates are
approximately 0.2, 0.5, and 0.65 for the (median-centered) Levene, fixed inflation
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Figure 3: ROC curves, λ = 4. The solid and dashed lines correspond to the random
and fixed factor models, respectively. The dotted lines correspond to the median
centered robust version of Levene’s test. ‘Random classification’ is represented by
the dot-dashed line.

factor, and random factor methods, respectively.
When the data are normal or lognormal, both the random and fixed factor

models are much better than the Brown and Forsythe (1974) median centered robust
version of Levene’s test. In particular, the middle plot shows that Levene’s test is
not at all robust to the normality assumption, as its ROC curve falls below the ‘ran-
dom classification’ line (in grey). In contrast, under the lognormal data generation
scheme, both the random and fixed factor models are quite robust. Furthermore,
for all the simulated distributions the performance of our methods improves as the
inflation factor increases, but the Levene method does not exhibit any improvement
(not shown in the plot).

The fixed factor method performs very poorly with Cauchy data (right panel).
In fact, it is even worse than the Levene method. An explanation is that the estimate
of λ is not consistent because the mean of the Cauchy distribution does not exist, so
the fixed factor model is clearly not appropriate in this extreme case. In contrast, the
random factor model allows for variability in the distribution of the inflation factor,
and is able to detect a reasonable number of the genes with differential variance
while maintaining a low false positive rate.

The interpretation of the ROC plots requires care. It appears that for the
normal data the ‘one at a time’ method has comparable performance to the two
model-based approaches since, although the Levene-based ROC curve is below the
other two model-based curves, it is well above the diagonal (in grey). However,
it merely indicates that for a certain threshold of the p-values, the number of true
positives exceed the number of false positives. In practice, the thresholds used to
plot the ROC curve for the Levene test are much too high to be practical in real-life
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applications, since, as we discussed above, the ‘one at a time’ method yields no
discoveries at any reasonable FDR threshold when the number of tests is large.

6 Case Studies
We consider four different statistical applications to genetics and molecular biology
to demonstrate the wide range of data sets to which our method can be applied. In all
cases we find strong evidence that there is a subset of the data in which the variance
in the treatment group is significantly higher or lower than in the control group but
there is no significant difference between the means. The first case study involves
a gene expression data set. The second deals with epigenetic data (methylation),
while the third uses data from a brain imaging experiment (functional MRI data).
The final example concerns metabolomics data.

The results in this section illustrate two things that are relevant to our previ-
ous derivations. First, we see that the observed distributions of the statistics rg and
xg in the applications considered are very close to the ones in our model. In partic-
ular, the normal approximation of xg appears to be very appropriate. Second, when
the overall mean does not change due to the treatment, but the variance does, our
method is able to detect it. In that sense, it complements the mean-based methods,
which would (most likely) fail to detect the change in variance, unless it is coupled
with a significant change in the mean response.

6.1 Microarray Data

Callow et al. (2000) used gene targeting in embryonic stem cells to produce mice
lacking apolipoprotein A-1, a gene known to play a critical role in high density
lipoprotein (HDL) cholesterol levels. In our analysis, we used the data and normal-
ization method provided with the limma R package (Smyth, 2005), which consists
of 5,548 ESTs, from eight control (wild type “black six”) mice and eight “knock-
out” (lacking ApoA1) mice. Common reference RNA was obtained by pooling
RNA from the control mice, and was used to perform expression profiling for all
16 mice. Using the lemma package (Bar and Schifano, 2010), which is designed to
detect genes that are differentially expressed, 9 genes are detected (with a 0.2 pos-
terior probability threshold) including the ApoA1 gene and others closely related to
it. The same set of the top eight genes were also identified as non-null (among oth-
ers) when using other (mean-based) packages like limma and locfdr (Efron et al.,
2008). These genes were confirmed to be differentially expressed in the knockout
versus the control line by an independent assay.
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Figure 4: The distribution of xg = log
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, case study 1: the Apo-A1 data set. Num-

ber of genes G = 5548, sample size n1 = n2 = 8, FDR threshold=0.05.

Applying the method in this paper while controlling the false discovery
rate at 5% we find 21 genes in which the variance in the treatment group was
significantly higher than in the control, and 21 genes in which the variance was
significantly smaller in the treatment group. Most of these genes had very small
mean-response difference (defined as dg = ȳ2·g− ȳ1·g) and were not detected by any
mean-based method, or by ‘one at a time’ test for unequal variance.

Figure 4 shows the distribution of the statistics {xg}. The scatter plot on the
left shows the genes with significantly higher and lower variance, marked by upper
red or lower blue triangles, respectively. The scatter plot and the histogram (right)
show that the normal approximation fits the distribution of xg very well. The green
dashed line represents the overall mean of xg (which, in our previous notation, we
referred to as log(τ)).

We investigated the functional status of the genes that had deflated and in-
flated variances using the National Institute of Health Gene tool and Genomenet
(http://www.ncbi.nlm.nih.gov/gene and http://www.genome.jp/, respec-
tively). It turns out that the inflated variance genes mostly have to do with cell
signaling, while the deflated variance genes seem more related to tighter regulation
of a lipid metabolism gene network. Given that the gene of primary focus in the
study, ApoA1, encodes apolipoprotein A-I, which is the major protein component
of high density lipoprotein (HDL) in plasma these results are biologically plausible.
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Figure 5: Case study 2: methylation data set. Boxplots of xg = log
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mixture components. Number of genes G = 119,260, sample size n1 = n2 = 3,
FDR threshold=0.05.

6.2 Methylation Data

DNA methylation plays an important role in regulation of gene expression. Re-
cent studies have shown that hyper- or hypomethylation are associated with cancer
(either as a causal effect or as an early indicator of the disease). In the following
analysis, we used an unpublished data set with 119,260 genes, and three subjects
in each group. Using the mean-based approach (Bar et al., 2010) we did not find
any significantly hyper or hypomethylated genes. However, applying the methods
developed in this paper we found a total of 153 genes with inflated methylation,
and 150 with deflated methylation (at the FDR level of 5%). In contrast, traditional
‘one at at time’ methods yield no discoveries, after accounting for multiple testing.

The observed mean differences {dg} are rather small, but the observed log-
ratio between the mean squared errors are very large (in absolute value) for some
genes. Figure 5 shows the boxplots of the three mixture components. The distri-
bution of xg in the null component is approximately normal with mean 0, and the
significant genes have |xg|> 7. Recall that xg is on the logarithmic scale, so for the
significant genes this corresponds to at least four orders of magnitudes in the ratio
between the mean squared errors between the two groups.
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Figure 6: Case study 3: fMRI data set. Boxplots of xg = log
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components. Number of voxels G = 36,145, sample size n1 = 29,n2 = 22, FDR
threshold=0.05.

6.3 fMRI Data

Functional magnetic resonance imaging (fMRI) is used to measure the change in
blood flow in the brain during certain neural or cognitive activity. In this example
we use data from a Pavlovian-type experiment, in which both groups were shown a
visual cue, but for the treatment group it was immediately followed by an auditory
signal (Soliman et al., 2010). One of the goals of the experiment was to test whether
after several training cycles there is a difference in the response to the visual cue
between the two groups, and if so, in which region of the brain. According to
the Pavlovian paradigm, it is expected that once trained, the treated subjects will
respond to the visual cue as if they receive the auditory cue. For more details about
the experiment, see the ‘Supporting Online Material’ document in Soliman et al.
(2010).

Again, no voxels were found to have significantly different mean levels
of response when using mean-based methods. However, we do find many vox-
els which exhibit significantly different levels of variability. Figure 6 shows the
boxplots of the three mixture components that our method identified from a total
of 36,145 voxels. A total of 1,276 voxels had a significantly increased variance in
the treatment group, and 1,142 voxels had a significantly decreased variance in the
treatment group.
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, case study 4: metabolomics data set.

Number of metabolites G = 225, sample size n1 = n2 = 10, FDR threshold=0.05.

6.4 Metabolomics Data

Our final example uses data from the area of metabolomics. In recent years the
study of chemical processes involving metabolites has become a popular comple-
ment to gene-expression analysis. Metabolites are the product of cellular pro-
cesses, and they include several pathways, like amino acid (e.g., creatine, glu-
tamine), lipid (e.g., choline, 2-hydroxyglutarate), and energy (citrate, pyrophos-
phate), just to name a few. Cancer researchers noted that there are differences in
cellular metabolism between normal and cancer cells (DeBerardinis et al., 2007).

In this (unpublished) experiment, two groups of pregnant women were treated
with two different levels of choline. The levels of nearly 250 metabolites were mea-
sured during the first and the twelfth weeks of the pregnancy. Here, we analyze the
effect of the treatment on metabolite levels after 12 weeks (taking week 0 as the
baseline for each woman). Once again, testing for differences in mean response
levels between the groups yields no discoveries. However, with our method we find
four metabolites whose variance increased significantly due to the treatment, and
seven whose variance decreased (see Figure 7).

7 Conclusions
We have developed a new model and an estimation procedure (based on the EM al-
gorithm) for parallel testing for inequality of variances. The model borrows strength
across the entire data, resulting in increased power and accuracy, while maintaining
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a low false discovery rate. Simulations show that the method performs well even
when the number of tests is very large and the sample sizes are small, and that it is
quite robust to deviations from normality. Our analysis of four different data sets
shows that the model assumptions are realistic, that the method is broadly applica-
ble, and that it complements methods that test for differences in means. In future
work we hope to develop a bivariate procedure for simultaneous testing of means
or variances.
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