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Summary

Recent developments in mass-spectrometry-based shotgun proteomics, especially methods using
spectral counting, have enabled large-scale identification and differential profiling of complex
proteomes. Most such proteomic studies are interested in identifying proteins, the abundance of which
is different under various conditions. Several quantitative methods have recently been proposed and
implemented for this purpose. Building on some techniques that are now widely accepted in the
microarray literature, we developed and implemented a new method using a Bayesian model to
calculate posterior probabilities of differential abundance for thousands of proteins in a given
experiment simultaneously. Our Bayesian model is shown to deliver uniformly superior performance

when compared with several existing methods.



Introduction

Mass-spectrometry-based shotgun proteomics has enabled large-scale identification and differential
profiling of complex proteomes vyielding significant insights into relevant biological systems (1). This
approach typically involves liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis and
employs hybrid mass spectrometers with high data acquisition efficiency for intensity-based sampling of
peptide ions (1, 2). The current quantification strategies for differential proteome analyses include the
use of stable isotope-labeled reagents for chemical derivitization or metabolic labeling of protein
samples (3). More recently, label-free techniques, such as peak intensity measurements and spectral

counting, have emerged (3).

Spectral counting involves measuring the abundance of a given protein based on the number of tandem
mass spectral observations for all its constituent peptides. Spectral counts (SPCs) have been shown to
correlate well with the abundance of the corresponding protein extending over a linear dynamic range
of at least two orders of magnitude for complex protein mixtures (4-7). SPCs can be readily extracted
from the result files of all database search engines that are used for protein identification in shotgun
proteomics analyses. As such, spectral counting is a flexible and straightforward technique. It thus offers
a practical alternative to label-based quantification methods, which can be limited by high cost of
reagents or incompatibilities with label incorporation. It is also a good substitute option for other label-
free qualification methods such as peak intensity measurements, which relies heavily on computational

efforts for chromatogram alignment and peak processing (3).

Maximizing the potential of spectral counting as a quantitative method has involved optimizations

throughout the typical shotgun analysis workflow including sample preparation and fractionation,



instrument setup, data processing and statistical analysis. Intensity-based peptide sampling in shotgun
LC-MS/MS is semi-random and depends largely on sample complexity, chromatographic separation and
MS instrument parameters (4). Considerations on the impact of several of these factors to increase
sampling depth have been studied (6, 8). Various schemes for counting matched spectra from database
search results (7, 9, 10) as well as incorporation of additional information from including fragment ion
MS/MS intensity and peptide count (11) and LC-MS peak area (12) have been explored. To more reliably
reflect proteome abundances, appropriate transformations of raw SPCs have accounted for peptide
length and total SPC within the sample (13) or probability of peptide detection (14). Statistical programs
for significance analysis of spectral counting studies have also emerged and are based mainly on

modeling the behavior of SPC datasets (8, 15-19).

More importantly, most proteomics studies are interested in finding proteins, the abundance of which
changes in different cellular states, under different conditions, or with respect to different treatments.
To this end, simple statistical methods have been employed to perform one protein at a time analysis
using, for example, Wald or likelihood-ratio statistics. More recently, Choi et al. (15) implemented a
Bayesian model (with an associated software, QSpec) in which all proteins are analyzed simultaneously

with differential abundance for individual proteins identified using pseudo Bayes factors.

In this paper we propose an alternative Bayesian model for comparing spectral counts under two
treatments/conditions. The model allows for simultaneous testing of several thousand proteins through
the calculation of posterior probabilities of their null and non-null status, with proteins in the non-null
group being those affected by the treatment. This two-group classification approach is analogous to
widely accepted statistical methods for analyzing microarray data (20, 21). The necessary computations
are easily implemented via Markov chain Monte Carlo methods using the OpenBUGS software package

(22). Furthermore, we show (see Results) that classification based on the Bayesian approach of Choi et



al. (15) is similar to the one-protein-at-a-time likelihood ratio test and substantially inferior in

performance to posterior classification using our Bayesian model.

Experimental Procedures

Synthetic Yeast Proteome Dataset

We used the F2 synthetic dataset generated by Choi and colleagues (15) from a yeast shotgun
proteomics analysis (8). The yeast dataset consisted of proteins extracted from Saccharomyces
cerevisiae strain BY4741 grown at middle log phase in media enriched in **N- or *’N-labeled amino acids.
Four independent cultures were grown in each medium type. 500 ug total protein from each growth
condition were mixed in a 1:1 ratio resulting in four biological replicates. The resulting mixtures of **N-
and °N-labeled proteins were then TCA-precipitated, urea-denatured, reduced, alkylated, and digested
with Lys-C and then with trypsin. The extracted peptides were fractionated using a 12-step
multidimensional protein identification technology (MUDPIT) setup and analyzed in an LTQ linear ion
trap mass spectrometer (ThermoFinnigan) equipped with a nano-LC electrospray ionization source.
Data-dependent acquisition settings include a full MS scan followed by CID fragmentation and MS/MS
analysis of the five most abundant peptide ions with the following dynamic exclusion parameters:
repeat count, 1; repeat duration, 30 s; exclusion duration, 300 s. Peak lists were obtained from RAW
files using the extract_ms.exe program and were then searched using SEQUEST (23) with the
appropriate mass modifications for *>N-labeled peptides against a yeast protein sequence database
appended with decoy sequences. DTASelect (24) was used to generate protein inventories with
SEQUEST score filtering that yielded a false protein identification error rate of less than 1% (calculated
based on decoy hits). 1307 proteins were identified at least once in the four biological replicates and the
SPCs for these proteins were obtained from the DTASelect-filtered SEQUEST search results. To generate

the F2 synthetic dataset (15), the protein list in the original yeast dataset was randomized and the



abundance of the first 200 proteins was modified to reflect 2-fold changes between **N- and °N-labeled
proteins. The 2-fold change was multiplied to the four replicates of **N-labeled proteins if the
corresponding mean SPC was greater than the mean SPC for the four replicates of °N-labeled proteins
and vice versa. For proteins having zero SPC in replicates belonging to the group with the smaller mean
SPC, a randomly generated Poisson count was used with the resulting mean SPC being equal to the 2—

fold change.

Human proteins spiked in yeast proteome background

The human-yeast proteome dataset was obtained from the analysis by Li and colleagues (19) of the
dataset obtained from the Clinical Proteomic Technology Assessment for Cancer (CPTAC) Study 6 (25). In
this CPTAC study, a lyophilized yeast lysate (60ng/uL) was reconstituted with or without the addition of
48 human proteins (Sigma UPS1) that were spiked in varying amounts (0.25, 0.74, 2.2, 6.7 and 20
fmol/uL). We only used the datasets comparing the yeast reference proteome spiked with 6.7 and 2.2
fmol/ uL UPS1, which yielded a 3-fold difference in abundance. The resulting mixtures were reduced,
alkylated, and digested with trypsin. Preparation and processing of these samples was performed
centrally at the National Institute for Standards and Technology (NIST) and were distributed in various
groups for MS analyses using various instruments as described in (25). The dataset used here was
derived from samples fractionated by reverse phase LC-MS/MS and analyzed in triplicate in one LTQ
instrument (ThermoFinnigan) and on two LTQ-Orbitrap instruments (ThermoFinnigan) at Vanderbilt
University. Data-dependent acquisition settings include a full MS scan in the LTQ for the standalone LTQ
study or in the Orbitrap for the LTQ-Orbitrap instruments followed by CID fragmentation and MS/MS
analysis of the eight most abundant peptide ions in LTQ in both instrument types. The following dynamic
exclusion parameters were used: repeat count, 1 and exclusion duration, 60 s. For data processing and

filtering (19), the resulting Thermo RAW files were converted to the mzML format by the ProteoWizard



MSConvert tool (26) and searched using the Myrimatch (27) search algorithm against a yeast protein
database with the 48 human protein and contaminant sequences as well as the corresponding reverse
sequences. IDPicker (28) was employed to filter peptide matches to a 2% false discovery rate (FDR). All
data from the three instruments were assembled into a single protein list requiring a minimum of 2
distinct peptides per protein. Only 46 out of the 48 human proteins were identified in the assembled
dataset. Furthermore, the integration of the protein lists resulted in an increase in decoy hits (22%
protein FDR) and an additional filter of five total SPC per protein was thereby imposed yielding a 6.8%

protein FDR. The final dataset consisted of 46 human and 1342 yeast proteins (total of 1488 proteins).

Statistical Methods

Consider a data set consisting of spectral counts for p proteins in n replicates. Suppose that the
replicates are either controls (e.g. wildtype) or from a treatment group. Let Y;; denote the spectral
counts for protein i in replicate j, and let T; be a binary indicator for treatment. The objective of our

analysis is to classify each protein as null or non-null with respect to the treatment.

A naive approach is to simply conduct one-at-a-time statistical tests on each protein. Since the

responses are counts, a natural starting point for analysis is the log-linear model,

log uij = Boi + B1iT; +logL; +logN;, (Eq.1)

where y;; denotes the expected count for protein i in replicate j, and the offsets log L; and log N;
respectively account for the length of the protein and the replicate effect. The hypothesis, Hy: f1; = 0,
represents the no treatment effect for protein i. Under the assumption that the counts are independent
Poisson variables, this hypothesis can be assessed one protein at a time using a Wald or likelihood ratio

(LR) test statistics,
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where f(y;; ;) is the Poisson likelihood for the counts for protein i with fitted means ﬂgk), fork =0,1,
in the null and non-null cases respectively. Both Wald and LR require calculation of the ML estimates for
the non-null model which can be obtained very quickly and efficiently, for example, using the glm
function in R (29), but involve an iterative fitting algorithm. In contrast, the score statistic (30) only
involves the ML estimate under the null model which is available in closed form. In fact, it can be shown

(see Supplemental Materials) that the score statistic for testing H,: f1; = 0 is given by

N] 2
n[Z?:l(yij—Wf/i)Tj]

BT e

(Eq.3)

These statistics, W;, 4; and S;, are typically compared to a chi-squared distribution with 1 degree of
freedom to determine significance, although with small sample sizes the chi-squared reference
distribution might not be appropriate. Alternatively, to account for possible overdispersion with respect
to Possion variation, one could conduct these tests under the assumption the counts are independent
negative binomial variables with means given by the model given in equation 1 or use a quasilikelihood-

based test (19).

A Bayesian Model

The fact that there is only a small amount of data per protein suggests that power can be gained by
borrowing strength across (the large number of) proteins. A general modeling strategy for can be
achieved by formulating the problem in a Bayesian framework. Choi et al. (15) proposed an approach
based on involving two Bayesian model fits, both requiring MCMC simulation, and implemented in a
package they called QSpec. The first (full) model assumes the counts are conditionally independent
Poisson variables with means given by the loglinear model:

9



lOg[lij = ag+ bOi + bli’l} + lOgLi + IOgN',

with prior specification, ag~N (0, 52), by;~N (0, 6&) and b;;~N(0, 6?) independently, and hyperpriors
05 2~gamma(0.1,0.1) and oy >~gamma(0.1,0.1). The second (restricted) model has the same form but
omits the treatment effect term, bliTj. Thus, the full model allows for a treatment effect for all proteins
simultaneously, while the restricted model does not permit a treatment effect for any protein. Proteins

are then classified as null or non-null on the basis of a pseudo-Bayes factor of the form

_ fosE™)

BF; ©y (Eq.4)

 Fsh

where ﬁgk) is the vector of means for protein i evaluated at the estimated posterior means of the
regression parameters obtained from the full (k = 1) and restricted (k = 0) model fits. That is the BF-
statistic is a function of both model fits and we note its similarity to the likelihood-ratio statistic in

equation 2. We will refer to this as the pseudo-Bayes method in what follows.
A Bayesian Mixture Model

We now propose an alternative approach in which we formulate the problem as a Bayesian classification
method. Specifically, we define I; to be an indicator for non-null status of the ith protein and suppose
that the indicators are independent Bernoulli(rr;) variables. We then propose to classify proteins as null

or non-null according to the posterior odds

__ P(Ij=1]|data)

0. =
' p(l;=0|data)

(Eq.5)

fori =1, ...p, with protein i classified as non-null if 0; > c for a suitably large positive c. This “two-
groups” mixture model approach is widely used and accepted in the microarray literature (20,21,31,32),

with the key difference being that the responses in the microarray context are continuous and often

10



modeled as (log) normal random variables. More generally, the inclusion of latent group indicators in

the statistical model is a core component of Bayesian classification methods (33).

The choice of the threshold ¢ may be somewhat arbitrary. The modern statistical approach is to attempt
to control the false discovery rate (FDR) (34); i.e. the proportion of proteins classified as non-null for
which there is in fact no treatment effect. In a recent paper (21) it is argued that FDR control can be
achieved approximately using a posterior probability threshold and a value of 0.8 (or equivalently a
posterior odds threshold of 4) is suggested for general use. However, in practice the choice of the
threshold may be influenced by time and financial constraints on the number of follow-up experiments

that are feasible.

In order to compute the posterior odds we consider the following modified version of model 1:

log I'[l] = ﬂO + ﬁl’l} + bOi + bliIiTj + lOgLi + lOgIV] (EC|6)

The linear predictor in equation 6 consists of 5, and 1, an overall mean for the control replicates and
an overall treatment effect; by; and by;, the corresponding protein specific effects; and offsets log L;

and log N;.

Suppose that conditional on the means, ;;, the counts, Y;;, are independent Poisson variables. Then the

jr
Bayesian model specification is completed by placing prior distributions the model parameters. Since 4,
Bo, and B are global parameters we expect their posterior distributions to be relatively insensitive to

the choice of prior. Hence, we use a uniform (Laplace) prior for the Bernoulli probability, ;, and diffuse

independent normal priors, Bo~N(0,10%) and $;~N(0, 102), for the global regression coefficients. We

consider three choices of prior distributions for the protein specific coefficients:

1. (bgi, b1;)~N,(0,X) independently for i = 1, ..., p, with Z~1~Wishart(I,v), where I is the

identity matrix and v = 10;

11



2. by;~N(0,0¢) and b;;~N (0, c?) independently for i = 1, ..., p, with 65 2~gamma(0.1,0.1) and
o1 2~gamma(0.1,0.1) independently; and
3. byi~N(0,0¢) and by;~N (8, d?) independently for i = 1, ..., p, with o5 2~gamma(0.1,0.1) and

o1 *~gamma(0.1,0.1) independently, and §~N (0, 10?).

Model 1 allows for potential correlation between the protein specific coefficients, whereas models 2
and 3 assume they are independent. Model 3 allows the posterior mean of the protein specific
treatment effects to be different in the null and non-null groups. This final modification is important

(see Results) if the non-null proteins are predominantly more abundant in one of the treatment groups.

The most straightforward method of computing posterior probabilities of null and non-null status, and
hence the posterior odds given in equation 5, is to simulate a Markov chain with a limiting distribution
equal to the posterior distribution of the parameters and latent factors given the data. Specifically, after
a suitable “burn-in” period, each successive iteration of the Markov chain can be regarded as a draw
from the posterior distribution, and therefore posterior means (or probabilities, as in equation 5) can be
computed as Monte Carlo averages. See (35) for a more detailed description of the theory behind
MCMC methods. OpenBUGS (22) is an open source statistical package that implements MCMC methods
for a large class of hierarchical Bayesian models that can be represented as directed acyclic graphs. The
Bayesian models discussed in this paper are all of this type and therefore all the necessary computations

can be carried out without the development of new, model-specific software.

Results

Figure 1 contrasts the performances of one-protein-at-a-time tests and the Bayesian methods discussed

in the previous section based on their receiver operating characteristic (ROC) curves for the two publicly
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available datasets described earlier. Figure 1A shows ROC curves for the synthetic dataset generated by

Choi et al. (15) based on the yeast shotgun proteomics analyses performed by Pavelka et al. (8).
Figure 1 here

One key finding is that the pseudo-Bayes method (15), which identifies proteins that are differentially
abundant in the two treatments using the BF-statistics given in equation 4, has similar performance to
the one-protein-at-a-time score and likelihood-ratio tests. The poor performance of the Wald test with
the synthetic 2-fold spiked dataset is not surprising because many of the proteins had very low SPC
values and the standard error for the estimated coefficient f;; is extremely unstable such cases. Our
Bayesian model 3 uniformly dominates the one-at-a-time methods (and pseudo-Bayes) in both datasets.
However, models 1 and 2, while essentially identical to model 3 in classifying the spiked proteins in the
synthetic data from (15), perform similarly to the one-at-a-time methods (and pseudo-Bayes) in the
CPTAC human-yeast dataset. An explanation for the different performance of models 1 and 2 in the two
data sets is that the 2-fold spiking of the SPCs in the synthetic data was done in approximately the same
number of mutant samples as wild type (see Figure 2). For this reason, the posterior mean of the
treatment effect is close to zero for both null and non-null proteins. In contrast the human proteins in
the CPTAC dataset are all spiked higher in the D-samples. Thus, the posterior mean in the non-null group

is positive, a possibility not allowed for in models 1 and 2.

Figure 2 here

Discussion

Strictly speaking Bayes factors are ratios comparing the marginal probability of the data under one
model specification to another (35). In the context of shotgun proteomic studies with two conditions

(e.g. wildtype and mutant) there are 2P possible models, where p is the number of proteins, since each

13



protein can have either equal or differential abundance under the two conditions. The approach of Choi
et al. (15) only considers two of these models, one in which differential abundance (non-null status) is
allowed for every protein, and one in which there is no difference between the conditions for any
protein. Thus, their protein-specific pseudo-Bayes factors cannot be interpreted in terms of
marginalizing over all other proteins. In contrast, our Bayesian model essentially considers all 2P
possibilities simultaneously through the inclusion of latent indicators of null and non-null status for each
protein. For this reason, we believe that our Bayesian mixture model, which leads to a simple
classification scheme based on posterior probabilities or odds, is much more statistically coherent and
defensible than an approach based on Bayes factors. As we noted in the Introduction, similar models are
now widely accepted for the analysis of microarray data (20,21). Finally, our approach is straightforward

to implement using a widely-used (open source) software package, OpenBUGS (22).

One minor drawback of the fully Bayesian mixture model analysis described in this paper is that it
requires MCMC simulation for implementation and is therefore slower than the simple one-at-a-time
methods (such as the score test which is virtually instantaneous). Even so, for a data set of the size
described in the Results section (n = 6 or 8, p~1000), running three Markov chains of length 10,000 on
a computer with an Intel Core 2 T9500 processor running at 2.60 MHz with 3.5 GB of RAM takes less
than 20 minutes. This does not seem too big a price to pay given the far superior performance we have

demonstrated.
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Legends:

Figure 1: ROC plots for one protein at a time Wald, score and likelihood ratio tests, posterior odds
derived from Bayesian models 1-3, and pBayes (15) for A) the 2-fold spiked synthetic dataset from Choi

et al. (15) and B) the CPTAC Human-Yeast dataset from Paulovich (24).

Figure 2: Abundance rates in the two treatment groups for the synthetic 2-fold spiked data (15) and the
CPTAC human-yeast data (19). The abundance rate is calculated as Y /(LN), where Y is the sample mean

SPC, L is the protein length, and N is the mean SPC overall all samples in the treatment group.
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