Supplementary Material for Booth et al.
Derivation of the Score Statistic

Let yi; denote the jth count under treatment k, where £ = 1, ..., K. Suppose
that the counts are independent Poission variates with means given by

log puj = B + log L + log Ni; ,

where log L and log Nj; are known offsets. The log-likelihood is given by
= > > (ynjlog i — puy) -
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Differentiating the log-likelihood with respect to components of 3 reveals
the kth component of the score function, S(3), to be
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Differentiating again reveals the information matrix (the negative Hessian)

to be I(B) = diag {Zj ,ukj}K

k=1"

The score statistic for testing 3; = --- = Bk is given by U = S'I1S,
where S and [ are the score function and information matrix evaluated at
the null ML estimate.

Now, if f; = -+ = B = [ say, then
ol
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Setting this derivative shows that the null ML estimate satisfies, y = LN ,
from which it follows that the null fitted values are given by
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Thus, the score statistic is given by
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When K = 2 we can use the fact that ¥ = (n141 + n2y2)/n to show that
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and so the score statistic can be rewritten as




R code for Model 3

#Set working directory/folder. This folder should contain this R file,
#the data file in the required format, and the file "proteomics.bug"

#Load the following packages.
library(coda)

library(BRugs)

library (R2WinBUGS)

Read in data

Format data for OpenBUGS

Function to generate initial values for OpenBUGS
Set the parameters (MCMC chains) to be saved
Call OpenBUGS

Extract results and write to file
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# 1. Read in data

# Comma separated data file with variables: Protein, Length, Wi1,...,UWk,

# M1,..,Mk, where Wl denotes 1st wildtype replicate count and M1 denotes
# the 1st mutant replicate
df=read.table("Syntheticdataset2fold.csv",sep="," ,header = TRUE)
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# 2. Format data for OpenBUGS

P=4f[,1] # P should be the Protein names (first column)
L=as.numeric(df[,2]) # L should be the length (second column)
n=dim(df) [2]-2 # n: the number of replicates (control+treatment)
Y=as.matrix(df[,3:(3+n-1)]) # the response columns

p=dim(Y) [1] # p: the number of proteins

N=apply(Y,2,mean) # N: the average count for each replicate

logL=log(L)

logN=as.numeric(log(N))

G=rep(c(-1,1) ,each=n/2)# assumes equal number of ctrl and trt reps
data=1ist(Y=Y,G=G,logl=1logL,logN=1ogN,p=p,n=n) # the data for OpenBUGS
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# 3. Function to generate initial values for OpenBUGS
inits=function(){1list(

I = rep(0,p), # Indicator for treatment effect
b0 = rnorm(p,0,1), # protein specific random effects
bl = rnorm(p,0,1),

taul0 = 1, # precision b0

psil =0, # mean bl

taul =1, # precision bl

beta0 = -log(mean(L)), # fixed intercept

betal = 0, # fixed effect for treatment

pil = 0.1 # prob for prior on nonnull status
)}
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# 4. Set the parameters (MCMC chains) to be saved
parameters=c("I", "tauO", "psil", "taul", "betaO", "betal", "pil")
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# 5. Call OpenBUGS
# model = "the path where the bugs model can be found"
# n.chains = how many mcmc chains to run (3 recommended)
# n.iter = the total number of iterations to run
# n.burnin = the number of iterations to burnin
# n.thin = k; every kth iteration will be saved
# debug = TRUE; if TRUE, any error messages will be displayed
ms.sim=bugs(data,inits,parameters,
model="proteomics.bug", # file containing BUGS language
n.chains=3,n.iter=10000,n.burnin=5000,n.thin=5,
debug=TRUE,DIC=FALSE, program="0penBUGS",
codaPkg=TRUE, save.history=FALSE)
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# 6. Extract results and write to file

X=ms.sim$sims.matrix

I.mean=apply(X[,1:p],2,mean)



write.table(data.frame(Protein=P,Prob=I.mean),
"bugs_output.csv",sep=",",row.names=F)
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BUGS language for Model 3 (“proteomics.bug”)

model
{
for (i in 1:p)
{
for (j in 1:n)
{

muli,jl<-exp(betaO+betal*G[jl+b0[i]+b1[i]*G[jl*I[i]+1logL[i]+1logN[j])
Y[i,j] dpois(muli,j])
}
b0 [i] “dnorm(0,taul)
b1[i] “dnorm(psil,taul)
I[i] “dbern(pil)
}
pil~dunif(0,1)
beta0~dnorm(0, .01)
betal~dnorm(0, .01)
tau0~dgamma(0.1,0.1)
psil~dnorm(0,0.1)
taul~dgamma(0.1,0.1)



3a: Synthetic 2—fold spiked 3b: CPTAC Human-Yeast C vs D
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Figure 3: ROC plots comparing the performance of one-at-a-time tests with
Bayesian methods 1-3 based on posterior odds of non-null status, and pseudo-
Bayes factors as described in Choi et al. (2008), over the entire range of false
positive rates. Figure 3a gives ROC curves for the sythetic spiked 2-fold data
(Choi et. al, 2008). Figure 3b gives the corresponding curves for the CPTAC
human-yeast dataset (Paulovich et al., 2010).



4a: CPTAC Human—-Yeast D vs C 4b: CPTAC Human-Yeast D vs C
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Figure 4: Relative abundance plot of the CPTAC human-yeast dataset
(Paulovich et al., 2010) showing down-regulation in non-null proteins in the
D-sample (Figure 4a). Figure 4b shows ROC plots comparing the perfor-
mance of one-at-a-time tests with Bayesian methods 1-3 based on posterior
odds of non-null status, and pseudo-Bayes factors as described in Choi et al.

(2008).



