
Supplementary Material for Booth et al.

Derivation of the Score Statistic

Let ykj denote the jth count under treatment k, where k = 1, . . . , K. Suppose
that the counts are independent Poission variates with means given by

log µkj = βk + logL+ logNkj ,

where logL and logNkj are known offsets. The log-likelihood is given by

l(β) =
∑
k

∑
j

(ykj log µkj − µkj) .

Differentiating the log-likelihood with respect to components of β reveals
the kth component of the score function, S(β), to be

∂l

∂βk
=
∑
j

(ykj − µkj) ,

Differentiating again reveals the information matrix (the negative Hessian)

to be I(β) = diag
{∑

j µkj
}K
k=1

.

The score statistic for testing β1 = · · · = βK is given by U = Ŝ ′Î−1Ŝ,
where Ŝ and Î are the score function and information matrix evaluated at
the null ML estimate.

Now, if β1 = · · · = βK = β say, then

∂l

∂β
=
∑
k

∑
j

(ykj − µkj) .

Setting this derivative shows that the null ML estimate satisfies, ȳ = eβ̂LN̄ ,
from which it follows that the null fitted values are given by

µ̂kj =
Nkj

N̄
ȳ .

Thus, the score statistic is given by

U =
K∑
k=1

[∑
j

(
ykj − Nkj

N̄
ȳ
)]2

∑
j
Nkj

N̄
ȳ

.

1

When K = 2 we can use the fact that ȳ = (n1ȳ1 + n2ȳ2)/n to show that

∑
j

(
y1j −

N1j

N̄
ȳ
)

=
n1n2

nN̄

(
N̄2ȳ1 − N̄1ȳ2

)
=
∑
j

(
y2j −

N2j

N̄
ȳ
)
,

and so the score statistic can be rewritten as

U =
n
[∑

j

(
y1j − N1j

N̄
ȳ
)]2

n1N̄1

N̄
n2N̄2

N̄
ȳ

.

2

R code for Model 3

#Set working directory/folder. This folder should contain this R file,

#the data file in the required format, and the file "proteomics.bug"

#Load the following packages.

library(coda)

library(BRugs)

library(R2WinBUGS)

1. Read in data

2. Format data for OpenBUGS

3. Function to generate initial values for OpenBUGS

4. Set the parameters (MCMC chains) to be saved

5. Call OpenBUGS

6. Extract results and write to file

###

1. Read in data

Comma separated data file with variables: Protein, Length, W1,...,Wk,

M1,..,Mk, where W1 denotes 1st wildtype replicate count and M1 denotes

the 1st mutant replicate

df=read.table("Syntheticdataset2fold.csv",sep=",",header = TRUE)

###

2. Format data for OpenBUGS

P=df[,1] # P should be the Protein names (first column)

L=as.numeric(df[,2]) # L should be the length (second column)

n=dim(df)[2]-2 # n: the number of replicates (control+treatment)

Y=as.matrix(df[,3:(3+n-1)]) # the response columns

p=dim(Y)[1] # p: the number of proteins

N=apply(Y,2,mean) # N: the average count for each replicate

logL=log(L)

logN=as.numeric(log(N))

G=rep(c(-1,1),each=n/2)# assumes equal number of ctrl and trt reps

data=list(Y=Y,G=G,logL=logL,logN=logN,p=p,n=n) # the data for OpenBUGS

3

###

3. Function to generate initial values for OpenBUGS

inits=function(){list(

I = rep(0,p), # Indicator for treatment effect

b0 = rnorm(p,0,1), # protein specific random effects

b1 = rnorm(p,0,1),

tau0 = 1, # precision b0

psi1 = 0, # mean b1

tau1 = 1, # precision b1

beta0 = -log(mean(L)), # fixed intercept

beta1 = 0, # fixed effect for treatment

pi1 = 0.1 # prob for prior on nonnull status

)}

###

4. Set the parameters (MCMC chains) to be saved

parameters=c("I", "tau0", "psi1", "tau1", "beta0", "beta1", "pi1")

###

5. Call OpenBUGS

model = "the path where the bugs model can be found"

n.chains = how many mcmc chains to run (3 recommended)

n.iter = the total number of iterations to run

n.burnin = the number of iterations to burnin

n.thin = k; every kth iteration will be saved

debug = TRUE; if TRUE, any error messages will be displayed

ms.sim=bugs(data,inits,parameters,

model="proteomics.bug", # file containing BUGS language

n.chains=3,n.iter=10000,n.burnin=5000,n.thin=5,

debug=TRUE,DIC=FALSE,program="OpenBUGS",

codaPkg=TRUE,save.history=FALSE)

###

6. Extract results and write to file

X=ms.sim$sims.matrix

I.mean=apply(X[,1:p],2,mean)

4

write.table(data.frame(Protein=P,Prob=I.mean),

"bugs_output.csv",sep=",",row.names=F)

###

BUGS language for Model 3 (“proteomics.bug”)

model

{

for (i in 1:p)

{

for (j in 1:n)

{

mu[i,j]<-exp(beta0+beta1*G[j]+b0[i]+b1[i]*G[j]*I[i]+logL[i]+logN[j])

Y[i,j]~dpois(mu[i,j])

}

b0[i]~dnorm(0,tau0)

b1[i]~dnorm(psi1,tau1)

I[i]~dbern(pi1)

}

pi1~dunif(0,1)

beta0~dnorm(0,.01)

beta1~dnorm(0,.01)

tau0~dgamma(0.1,0.1)

psi1~dnorm(0,0.1)

tau1~dgamma(0.1,0.1)

}

5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3a: Synthetic 2−fold spiked

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

Wald
LR
Score
pBayes
Bayes1
Bayes2
Bayes3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3b: CPTAC Human−Yeast C vs D

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e
Wald
LR
Score
pBayes
Bayes1
Bayes2
Bayes3

Figure 3: ROC plots comparing the performance of one-at-a-time tests with
Bayesian methods 1-3 based on posterior odds of non-null status, and pseudo-
Bayes factors as described in Choi et al. (2008), over the entire range of false
positive rates. Figure 3a gives ROC curves for the sythetic spiked 2-fold data
(Choi et. al, 2008). Figure 3b gives the corresponding curves for the CPTAC
human-yeast dataset (Paulovich et al., 2010).

6

0.00 0.02 0.04

0.
00

0.
02

0.
04

4a: CPTAC Human−Yeast D vs C

D−sample abundance rate

C
−

sa
m

pl
e

ab
un

da
nc

e
ra

te

●● ●
●

●

●

●

●
●

●

●
●

●
●

●●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●● ●

●

●

●

●

●●●●
●

●

●

●●●
●

●●●

●●

●

●

●
●

●●
●

●

●

●

●●
●●●●●●●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●●●
●●●

●
●●●

●

●

●●●

●

●

●

●

●●
●

●●●●●●●●
●

●

●

●

●

●

●●●
●●●●●●

●●●●
●

●●●
●●

●●●●
●
●●●

●

●
●

●
●
●●●●
●

●
●

●

●
●

●●
●

●●●●●
●

●

●●●

●

●●●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●
●

●●
● ●

●
●

●

●

●
●

●●●●●
●●●

●
●

●

●●●●
●

●●
●

●

●
●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●
●

●

●

●●●
●

●●●●

●

●

●●●●
●●●●
●

●

●
●

●●●

●

●

●●●●●●●
●
●●●●

●
●●

●

●●●●

●

●●
●

●●

●

●

●

●

●●●●●●●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●●

●●
●●

●
●●
●●
●

●

●

●
●●

●

●●●

●

●●●●●
●

●
●

●
●●

●

●

●

●

●
●

●
●

●

●

●
●●●●

●

●

●

●
●●

●

●

●
●

●●
●

●●
●

●

●

●

●
●●

●

●●●●●●
●

●
●

●

●●

●

●

●●

●

●●

●

●
●

●●
●

●

●

●

●●●
●

●●
●

●

●

●
●

●
●●●●●
●

●

●

●

●

●●

●

●

●

●

●●●●
●

●●●●

●

●●●●●

●
●

●

●●
●

●

●

●
●

●

●

●●●●●●

●

●

●

●●●●

●

●●●

●

●

●

●●

●

●

●

●●●●●●
●

●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●

●●●●●

●●●
●●●

●

●●●

●
●

●

●●●●●

●●

●●
●

●

●●

●
●

●●

●

●

●

●

●
●

●

●●

●

●
●
●●●●

●●

●

●

●●●

●

●●●
●
●

●

●●

●

●●

●

●●●●
●

●●
●●●●●

●

●

●
●

●
●●
●

●●

●

●●

●

●

●

●

●●

●●●●
●

●●

●

●

●
●

●

●●●●
●●

●

●

●

●●●●
●

●●

●

● ●
●

●

●

●●●●●●●●

●

●●
●

●
●

●

●●

●

●●●

●

●●●●
●

●●●●
●

●

●

●

●●
●●

●

●

●

●●●●

●
●

●

●
●

●
●

●

●●
●●

●

●●
●
●●●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●●
●

●

●
●●

●●●
●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●
●●●●●●
●

●
●●●
●

●

●

●●●
●

●

●
●

●
●

●●

●

●
●

●●●●
●●●●●

●
●

●
●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●●●●●

●
●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●
●

●

●
●

●

●●

●●
●

●●
●

●

●
●

●
●●
●

●●
●

●

●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●

●●●●

●

●

●

●●

●

●
●

●
●●●●●

●

●

●

●●●●
●
●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●●●

●

●

●●
●

●

●

●

●

●●
●
●

●

●

●●●

●

●●●●●●●●●●●●

●●
●●●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●●●●

●●

●●

●

●

●
●

●●
●
●

●

●●
●

●

●●●●
●

●●●●●

●

●
●

●

●

●
●

●●

●

●●
●

●
●

●

●●●
●

●

●

●●

●

●

●

●

●●●

●

●●
●●

●

●
●

●
● ●●

●

●

●●
●

●
●

●●●●●
●

●

●●●●●

●

●●●
●●●●●

●

●●●●●

●
●

●●

●

●●●●●●●

●

●●●●●●
●

●●●●●

●

●●●●
●

● ●

●●●●
●●●

●●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●●

●

●●●●

●

●●●●●
●

●

●
●●●

●
●●

●
●●●●
●
●

●●●
●

●
●●

●

●●

●●●
●●●

●

●●
●●●●●●

●

●●●
●

●●
●

●

●

●

●

●
●

●
●●

●

●

●●
●●

●

●

●

●●

●
●●●

●

●

●

●●

●

●

●

●

●●

●

●

●●●
●

●

●
●●●●
●

●

●

●●
●

●●●●●

●

●●●●●

●

●
●

●
●
●

●

●

●

●

●
●●

●
●

●●●●
●

●●●●
●

●●

●●

●●
●
●●

●●●●●●

●

●

●

●●

●●

●●●
● ●

●
●

●

●

Null
Nonnull

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4b: CPTAC Human−Yeast D vs C

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e
Wald
LR
Score
pBayes
Bayes1
Bayes2
Bayes3

Figure 4: Relative abundance plot of the CPTAC human-yeast dataset
(Paulovich et al., 2010) showing down-regulation in non-null proteins in the
D-sample (Figure 4a). Figure 4b shows ROC plots comparing the perfor-
mance of one-at-a-time tests with Bayesian methods 1-3 based on posterior
odds of non-null status, and pseudo-Bayes factors as described in Choi et al.
(2008).

7

