
Supplementary Material for Booth et al.

Derivation of the Score Statistic

Let ykj denote the jth count under treatment k, where k = 1, . . . , K. Suppose
that the counts are independent Poission variates with means given by

log µkj = βk + logL+ logNkj ,

where logL and logNkj are known offsets. The log-likelihood is given by

l(β) =
∑
k

∑
j

(ykj log µkj − µkj) .

Differentiating the log-likelihood with respect to components of β reveals
the kth component of the score function, S(β), to be

∂l

∂βk
=
∑
j

(ykj − µkj) ,

Differentiating again reveals the information matrix (the negative Hessian)

to be I(β) = diag
{∑

j µkj
}K
k=1

.

The score statistic for testing β1 = · · · = βK is given by U = Ŝ ′Î−1Ŝ,
where Ŝ and Î are the score function and information matrix evaluated at
the null ML estimate.

Now, if β1 = · · · = βK = β say, then

∂l

∂β
=
∑
k

∑
j

(ykj − µkj) .

Setting this derivative shows that the null ML estimate satisfies, ȳ = eβ̂LN̄ ,
from which it follows that the null fitted values are given by

µ̂kj =
Nkj

N̄
ȳ .

Thus, the score statistic is given by

U =
K∑
k=1

[∑
j

(
ykj − Nkj

N̄
ȳ
)]2

∑
j
Nkj

N̄
ȳ

.
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When K = 2 we can use the fact that ȳ = (n1ȳ1 + n2ȳ2)/n to show that

∑
j

(
y1j −

N1j

N̄
ȳ
)

=
n1n2

nN̄

(
N̄2ȳ1 − N̄1ȳ2

)
=
∑
j

(
y2j −

N2j

N̄
ȳ
)
,

and so the score statistic can be rewritten as

U =
n
[∑

j

(
y1j − N1j

N̄
ȳ
)]2

n1N̄1

N̄
n2N̄2

N̄
ȳ

.
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R code for Model 3

#Set working directory/folder. This folder should contain this R file,

#the data file in the required format, and the file "proteomics.bug"

#Load the following packages.

library(coda)

library(BRugs)

library(R2WinBUGS)

# 1. Read in data

# 2. Format data for OpenBUGS

# 3. Function to generate initial values for OpenBUGS

# 4. Set the parameters (MCMC chains) to be saved

# 5. Call OpenBUGS

# 6. Extract results and write to file

#########################################################################

# 1. Read in data

# Comma separated data file with variables: Protein, Length, W1,...,Wk,

# M1,..,Mk, where W1 denotes 1st wildtype replicate count and M1 denotes

# the 1st mutant replicate

df=read.table("Syntheticdataset2fold.csv",sep=",",header = TRUE)

#########################################################################

# 2. Format data for OpenBUGS

P=df[,1] # P should be the Protein names (first column)

L=as.numeric(df[,2]) # L should be the length (second column)

n=dim(df)[2]-2 # n: the number of replicates (control+treatment)

Y=as.matrix(df[,3:(3+n-1)]) # the response columns

p=dim(Y)[1] # p: the number of proteins

N=apply(Y,2,mean) # N: the average count for each replicate

logL=log(L)

logN=as.numeric(log(N))

G=rep(c(-1,1),each=n/2)# assumes equal number of ctrl and trt reps

data=list(Y=Y,G=G,logL=logL,logN=logN,p=p,n=n) # the data for OpenBUGS
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#########################################################################

# 3. Function to generate initial values for OpenBUGS

inits=function(){list(

I = rep(0,p), # Indicator for treatment effect

b0 = rnorm(p,0,1), # protein specific random effects

b1 = rnorm(p,0,1),

tau0 = 1, # precision b0

psi1 = 0, # mean b1

tau1 = 1, # precision b1

beta0 = -log(mean(L)), # fixed intercept

beta1 = 0, # fixed effect for treatment

pi1 = 0.1 # prob for prior on nonnull status

)}

#########################################################################

# 4. Set the parameters (MCMC chains) to be saved

parameters=c("I", "tau0", "psi1", "tau1", "beta0", "beta1", "pi1")

#########################################################################

# 5. Call OpenBUGS

# model = "the path where the bugs model can be found"

# n.chains = how many mcmc chains to run (3 recommended)

# n.iter = the total number of iterations to run

# n.burnin = the number of iterations to burnin

# n.thin = k; every kth iteration will be saved

# debug = TRUE; if TRUE, any error messages will be displayed

ms.sim=bugs(data,inits,parameters,

model="proteomics.bug", # file containing BUGS language

n.chains=3,n.iter=10000,n.burnin=5000,n.thin=5,

debug=TRUE,DIC=FALSE,program="OpenBUGS",

codaPkg=TRUE,save.history=FALSE)

#########################################################################

# 6. Extract results and write to file

X=ms.sim$sims.matrix

I.mean=apply(X[,1:p],2,mean)
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write.table(data.frame(Protein=P,Prob=I.mean),

"bugs_output.csv",sep=",",row.names=F)

#########################################################################

BUGS language for Model 3 (“proteomics.bug”)

model

{

for (i in 1:p)

{

for (j in 1:n)

{

mu[i,j]<-exp(beta0+beta1*G[j]+b0[i]+b1[i]*G[j]*I[i]+logL[i]+logN[j])

Y[i,j]~dpois(mu[i,j])

}

b0[i]~dnorm(0,tau0)

b1[i]~dnorm(psi1,tau1)

I[i]~dbern(pi1)

}

pi1~dunif(0,1)

beta0~dnorm(0,.01)

beta1~dnorm(0,.01)

tau0~dgamma(0.1,0.1)

psi1~dnorm(0,0.1)

tau1~dgamma(0.1,0.1)

}
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Figure 3: ROC plots comparing the performance of one-at-a-time tests with
Bayesian methods 1-3 based on posterior odds of non-null status, and pseudo-
Bayes factors as described in Choi et al. (2008), over the entire range of false
positive rates. Figure 3a gives ROC curves for the sythetic spiked 2-fold data
(Choi et. al, 2008). Figure 3b gives the corresponding curves for the CPTAC
human-yeast dataset (Paulovich et al., 2010).
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4a: CPTAC Human−Yeast D vs C

D−sample abundance rate

C
−

sa
m

pl
e 

ab
un

da
nc

e 
ra

te

●● ●
●

●

●

●

●
●

●

●
●

●
●

●●●

●

●●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●● ●

●

●

●

●

●●●●
●

●

●

●●●
●

●●●

●●

●

●

●
●

●●
●

●

●

●

●●
●●●●●●●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●●●
●●●

●
●●●

●

●

●●●

●

●

●

●

●●
●

●●●●●●●●
●

●

●

●

●

●

●●●
●●●●●●

●●●●
●

●●●
●●

●●●●
●
●●●

●

●
●

●
●
●●●●
●

●
●

●

●
●

●●
●

●●●●●
●

●

●●●

●

●●●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●
●

●●
● ●

●
●

●

●

●
●

●●●●●
●●●

●
●

●

●●●●
●

●●
●

●

●
●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●
●

●

●

●●●
●

●●●●

●

●

●●●●
●●●●
●

●

●
●

●●●

●

●

●●●●●●●
●
●●●●

●
●●

●

●●●●

●

●●
●

●●

●

●

●

●

●●●●●●●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●●

●●
●●

●
●●
●●
●

●

●

●
●●

●

●●●

●

●●●●●
●

●
●

●
●●

●

●

●

●

●
●

●
●

●

●

●
●●●●

●

●

●

●
●●

●

●

●
●

●●
●

●●
●

●

●

●

●
●●

●

●●●●●●
●

●
●

●

●●

●

●

●●

●

●●

●

●
●

●●
●

●

●

●

●●●
●

●●
●

●

●

●
●

●
●●●●●
●

●

●

●

●

●●

●

●

●

●

●●●●
●

●●●●

●

●●●●●

●
●

●

●●
●

●

●

●
●

●

●

●●●●●●

●

●

●

●●●●

●

●●●

●

●

●

●●

●

●

●

●●●●●●
●

●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●

●●●●●

●●●
●●●

●

●●●

●
●

●

●●●●●

●●

●●
●

●

●●

●
●

●●

●

●

●

●

●
●

●

●●

●

●
●
●●●●

●●

●

●

●●●

●

●●●
●
●

●

●●

●

●●

●

●●●●
●

●●
●●●●●

●

●

●
●

●
●●
●

●●

●

●●

●

●

●

●

●●

●●●●
●

●●

●

●

●
●

●

●●●●
●●

●

●

●

●●●●
●

●●

●

● ●
●

●

●

●●●●●●●●

●

●●
●

●
●

●

●●

●

●●●

●

●●●●
●

●●●●
●

●

●

●

●●
●●

●

●

●

●●●●

●
●

●

●
●

●
●

●

●●
●●

●

●●
●
●●●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●●
●

●

●
●●

●●●
●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●
●●●●●●
●

●
●●●
●

●

●

●●●
●

●

●
●

●
●

●●

●

●
●

●●●●
●●●●●

●
●

●
●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●●●●●

●
●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●
●

●

●
●

●

●●

●●
●

●●
●

●

●
●

●
●●
●

●●
●

●

●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●

●●●●

●

●

●

●●

●

●
●

●
●●●●●

●

●

●

●●●●
●
●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●●●

●

●

●●
●

●

●

●

●

●●
●
●

●

●

●●●

●

●●●●●●●●●●●●

●●
●●●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●●●●

●●

●●

●

●

●
●

●●
●
●

●

●●
●

●

●●●●
●

●●●●●

●

●
●

●

●

●
●

●●

●

●●
●

●
●

●

●●●
●

●

●

●●

●

●

●

●

●●●

●

●●
●●

●

●
●

●
● ●●

●

●

●●
●

●
●

●●●●●
●

●

●●●●●

●

●●●
●●●●●

●

●●●●●

●
●

●●

●

●●●●●●●

●

●●●●●●
●

●●●●●

●

●●●●
●

● ●

●●●●
●●●

●●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●●

●

●●●●

●

●●●●●
●

●

●
●●●

●
●●

●
●●●●
●
●

●●●
●

●
●●

●

●●

●●●
●●●

●

●●
●●●●●●

●

●●●
●

●●
●

●

●

●

●

●
●

●
●●

●

●

●●
●●

●

●

●

●●

●
●●●

●

●

●

●●

●

●

●

●

●●

●

●

●●●
●

●

●
●●●●
●

●

●

●●
●

●●●●●

●

●●●●●

●

●
●

●
●
●

●

●

●

●

●
●●

●
●

●●●●
●

●●●●
●

●●

●●

●●
●
●●

●●●●●●

●

●

●

●●

●●

●●●
● ●

●
●

●

●

Null
Nonnull

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4b: CPTAC Human−Yeast D vs C

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e
Wald
LR
Score
pBayes
Bayes1
Bayes2
Bayes3

Figure 4: Relative abundance plot of the CPTAC human-yeast dataset
(Paulovich et al., 2010) showing down-regulation in non-null proteins in the
D-sample (Figure 4a). Figure 4b shows ROC plots comparing the perfor-
mance of one-at-a-time tests with Bayesian methods 1-3 based on posterior
odds of non-null status, and pseudo-Bayes factors as described in Choi et al.
(2008).

7


