What is Functional Data?

What are the most obvious features of these data?

- quantity
- frequency (resolution)
What is Functional Data?

What are the most obvious features of these data?

- quantity
- frequency (resolution)
- similar trends

Most important: smoothness

These data describe (nearly) a process that changes smoothing, and continuously over time.

Functional Data Analysis = Analysis of data that are functions.
What is Functional Data?

Most important: **smoothness**

These data describe (nearly) a process that changes smoothing, and continuously over time. Functional Data Analysis = Analysis of data that are **functions**. Domain is usually time, but can be anything: space, energy ...

Functional data analysis involves repeated measures of the same process.

What is Functional Data?

20 replications, 1401 observations within replications

Functional data is often complicated:

- not easily described by mathematical formulae
- variation **between** replications even harder to describe

20 replications, 1401 observations within replications, 2 dimensions
What is Functional Data?
20 replications, 1401 observations within replications, 2 dimensions

Functional data is often complex:
- often a large number of related quantities
- viewing each replication as a single observation can make the data easier to think about (once we have the right machinery)

What are these data, anyway?
What is Functional Data?
20 replications, 1401 observations within replications, 2 dimensions

Functional data is often complex:
- often a large number of related quantities
- viewing each replication as a single observation can make the data easier to think about (once we have the right machinery)

What are these data, anyway?
What if I plot one component against another?

Classical Functional Data
Measures of position of nib of a pen writing "fda". 20 replications, measurements taken at 200 hertz.

Characteristics

- Data are measurements of smooth processes over time
- We usually do not want to make parametric assumptions about those processes.
- Often have multiple measurements of the same process
- We are interested in describing the variation of processes.
- Frequently, collected data have high resolution and low noise.
- Can be applied to any estimate of a smooth process.

About Functional Data Analysis

1. FDA is New
 - First named in Dalzell & Ramsay, 1991
 - Relatively little penetration into applied fields (= easy publication)
 - Several competing methodologies (we focus on one)
 - Limited public software/resources
 - data analysis rather than inference

2. Functional Data is Complex
 - Requires more thought/judgement than a t-test
 - data needs pre-processing
 - parametric inference is rarely available/appropriate
BTRY 6150: Applied Functional Data Analysis

Audience: application areas with functional data

Focus:
- What can Functional Data Analysis do?
- How do I make it happen?

Software: packages in R, Matlab

Goals: Enabling you to
- Understand and interpret the result of FDA applied to real data
- Use existing FDA libraries to analyze functional data
- Evaluate its usefulness/correctness
- Extend the methods in existing software if you need to

Not Covered: reproducing-kernel Hilbert spaces, asymptotics, theorems...

Pre-requisites and Recommendations

Pre-requisites: BTRY 601 and 602 or equivalent (at least multiple linear regression)

Useful: Life will be easier if you do not need to learn some of the following:
- R/Matlab or other programming experience
- Calculus
- Matrix algebra
- Multivariate statistics
- Computational statistics

Any necessary material will be covered in class, but will be out of context.

Resources

Books:
- Chapters from Ramsay, Graves and Hooker, (2009, hopefully) *Functional Data Analysis in R*.

Online:
- http://www.functionaldata.org for FDA
- http://www.r-project.org a general site for R

All class notes, exercises etc will be posted here.

Class materials will also be posted to Blackboard; a general discussion board has also been set up.

Assessment

3 Assignments (20% each)
- Using the FDA libraries to analyze data
- Interpreting results of this analysis
- Some simulation studies

Class Project (40%)
- Analysis of real-world data
 - End of semester presentation
 - Short written report.
 - More details later.

Policies:
- you are welcome to discuss homework, but you should do and write it individually
- project may be done as a group, but should be submitted with a statement of who did which parts
Back to "What is Functional Data"

Or What isn’t Functional Data?

Do my data need to look this good?

Data may be measured more noisily

We need to find the smooth process under the data.

Data may be measured more sparsely

We may not have repeated measurements

- Single time series
- But, repeated "shapes" over each year
- We can use this to investigate variation, development, dynamics
Necessities for Functional Data

- must believably derive from a smooth process
- process should not be easily parameterizable (should not be able to write down a formula)
- enough data to resolve the essential features of the process (peaks, zero-crossings, speed... will depend on application)
- some repetition in the process
- do not need equally-spaced or perfect measurements

Common Sources

- medical monitoring: EEG, ECG, fMRI, blood pressure...
- medical tests: HIV antibodies, flu screens...
- biology: animal behavior (whale songs, fly egg-laying...)
- environmental monitoring: weather, pollution, solar radiation, traffic...
- optotrack experiments: psychology/physiology
- economics/marketing: macro-trends, futures markets
- web data: e-bay auction prices, google trends

Essential Questions

- Or what can FDA do for me?
 - How do we go from discrete to functional data?
 - How do we describe random variation in functional data?
 - How do we decide if groups of functional data are different?
 - How do we relate functional data to other data? To other functional data?
 - What is special about functional data?
 - Aligning functions (registration)
 - Use of rates of change (dynamics)

Approximate Class Agenda

1. Introduction, R, Projects (weeks 1 and 2)
2. From data to functional data (weeks 3 - 6/7)
 - Basis expansions and smoothing
 - The fda library
 - Positive and monotone smoothing
 - No classes Sept 16 and 18
3. Exploring Functional Data (weeks 7-9)
 - Means, variances, covariances
 - Functional PCA
4. Functional Linear Models (weeks 9 - 11)
5. Registration (week 12)
6. Dynamic Models (weeks 13-14)
7. Project Presentations (week 15)