Question 4

a) \[p(y|d,v) = \int \frac{e^{-\lambda} \mu^{y-1} e^{-\lambda}}{\Gamma(y) \lambda^y} \, d\lambda \]

\[= \frac{1}{\Gamma(y) \lambda^y} \int \mu^{y-1} e^{-\lambda (1+\frac{1}{2})} \, d\lambda \]

\[= \frac{\Gamma(y+v)}{\Gamma(y) \lambda^y (1+\frac{1}{2})^{y+v}} \]

\[= \frac{\Gamma(y+v)}{\Gamma(y) \lambda^y} \left(\frac{1}{1+\lambda} \right)^y \left(\frac{1}{1+\lambda} \right)^v \]

which we recognise as being Negative Binomial \((y, \frac{1}{1+\lambda})\)

hence \(EY = \frac{\nu(1+\lambda)}{(1+\lambda)} = \nu \lambda\).

\(\text{Var}(Y) = \frac{\nu(1+\lambda)}{(1+\lambda)^2} = \nu + \frac{\nu}{\lambda^2}\).

Now consider \(EY_i = \frac{\mu_i}{\nu} \) but \(Y_i = Y + \epsilon_i\), we re-parameterise \(\epsilon_i = \frac{\mu_i}{\nu}\) hence \(\text{Var}(Y_i) = \frac{\nu}{\lambda^2} + \frac{\nu}{\lambda^2} \nu_i^2\).

We also observe that for \(\nu\) fixed we can write

\[p(y_i|d,Y) = \exp \left\{ \frac{\mu_i}{\nu} \log \left(\frac{\mu_i}{\nu} \right) + \nu \log \left(\frac{1}{1+\frac{\mu_i}{\nu}} \right) - \log \left(\frac{\Gamma(y_i+\nu)}{\Gamma(y_i) \lambda^y} \right) \right\} \]

which is in exponential family form with

\(\Theta_i = \log \left(\frac{\mu_i}{\nu} \right), \quad b(\Theta_i) = -\nu \log \left(1 - e^{\Theta_i} \right)\)

\(\mathbf{a}(\phi) = 1 \quad \text{and} \quad \mathbf{a}_{\phi} = -\log \left(\frac{\Gamma(y_i+\nu)}{\Gamma(y_i) \lambda^y} \right)\).
Conversely, setting $d_i = d$, constant,

$$ P(y; d, Y_i) = \exp \{ \log \left(\frac{Y_i \exp(y)}{Y_i} \right) + y \log \left(\frac{1}{d} \right) + y \log \left(\frac{d}{Y_i} \right) - \log Y_i \} $$

which cannot be written in exponential family form due to the term $Y_i(Y_i + d)$.

In this case, re-parametrizing $X_i = \frac{y_i}{d}$, we have $\text{var}(Y_i) = (1+d)X_i$, $i.e.$ an over-dispersed Poisson variance.

Finally, if $d_i = \theta + \psi X_i$ and $V_i = \theta + \psi X_i$, then:

$$ E_y = \frac{\theta + \psi X_i}{1 + \theta X_i} = X_i, \quad \text{Var}(y) = \mu_i + \mu_i(\theta + \psi X_i) $$

$$ = \mu_i + \theta \mu_i + \psi \mu_i^2 $$

Note that since the V_i change with X_i, this cannot be written in exponential family form for the same reasons as above.

Finally, for $\theta = 1, \theta = 1$, the quasi-likelihood is

$$ Q(\theta, y) = \int_y^\infty \frac{y \log \left(\frac{1}{\theta X_i} \right)}{y \log \left(\frac{1}{\theta X_i} \right)} \, dx = \int_y^\infty \frac{1}{1 + \theta X_i} \, dx = y \log \left(\frac{\theta X_i}{y + \theta} \right) - \frac{\theta X_i}{y + \theta} $$

which is negative binomial, up to a constant. For $V(\mu) = (1+d)\mu$,

$$ Q(\theta, y) = \int_y^\infty \frac{1}{1 + \theta X_i} \, dx = \frac{y \log \left(\frac{1}{\theta} \right) - \frac{\theta X_i}{1 + \theta}}{1 + \theta} $$

$$ = \frac{1}{1 + \theta} \left(y \log \mu - \mu \right) $$

which is a scaled version of the Poisson likelihood.
Any of the variance parameters could be fit in one of two ways:

1. Since we always have a negative binomial model, we can maximize a likelihood. However, this cannot always be done within a
 framework.

2. In a quasi-likelihood setting, we could consider solving

 \[\frac{\sum_{i=1}^{n} (y_i - \mu_i)^2}{n \sigma^2} - 1 = 0 \]

 where we have subsumed variance parameters into \(\sigma^2 \).

The models could be distinguished by comparing their likelihoods if the first approach in part 5 was taken.

Alternatively, forming the squared raw residuals \(z_i = (y_i - \mu_i)^2 \), we could examine the significance of linear and quadratic terms in the regression \((z_i - \mu_i) = \beta_0 + \beta_1 \mu_i + \beta_2 \mu_i^2 \), possibly appropriately weighted.
Question 3

a) We observe that if \(A \) and \(B \) are symmetric and positive definite then \(A^{-1}B \) and \(B^{-1}A \) are also positive definite.

Then, if \(A - B \succeq 0 \), \(A^{-1}(A-B)B^{-1} \succeq 0 \Rightarrow B^{-1}A^{-1} \succeq 0 \).

b) If \(\beta^* \) is a solution to \(D^T V^{-1}(y - mu) = 0 \)
then \(\text{cov}(\beta^*) = (D^T V^{-1}D)^{-1} = A \)
and \(\beta^* \) is the covariance of \(\beta \) and \(V = V_0 \) this reduces to \(\text{cov}(\beta^*) = (D^T V^{-1}D)^{-1} = A \).

Now, we consider
\[
B^{-1}A^{-1} = D^T (V_0^{-1} - V_0^{-1}D(D^T V^{-1}V_0^{-1}D)D^T V^{-1}) D
\]
and we observe that this is the covariance of
\[
(I - V_0^{-1}D(D^T V^{-1}V_0^{-1}D)D^T V^{-1}) y \quad \text{and} \quad D^T V^{-1}y.
\]
and is positive definite. Hence \(A - B \succeq 0 \).

Question 4

If we write \(V = D R D \) with \(D \) diagonal, \(R \) independent of \(y \) and assume \(V \) is positive definite, then \(D \) and \(R \) are also positive definite and hence the diagonal entries of \(D \) are strictly positive.

Now, we observe that from \(\mu \text{ln} pg.334 \), with
\(L = V^{-1} \), \(W_{ij} = \frac{r_{i}^{*} y_{j}}{\text{det}(D) \text{det}(W)} \) and \(r_{ij}^{*} = (y_{i}, y_{j}) \text{entry of } R^{-1} \)
the existence of a quasi-likelihood requires
\[
\frac{\partial W_{ij}}{\partial \mu_{i}} = \frac{\partial W_{ij}}{\partial \mu_{j}} = \frac{\partial W_{ij}}{\partial \mu_{k}} \quad \text{for } i, j, k.
\]
Now, \(\frac{\partial W_{ii}}{\partial \mu_{j}} = 0 = \frac{\partial W_{ij}}{\partial \mu_{j}} = \frac{\partial W_{ij}}{\partial \mu_{j}} \frac{d \text{det}(W)}{d \mu_{j}} \frac{1}{d y_{i}} \frac{1}{d y_{j}} \frac{r_{ij}^{*}}{d y_{i}^{2}} \frac{d y_{i}}{d y_{j}} \)

since \(d y_{i}^{2} > 0 \) this is only true if \(r_{ij}^{*} = 0 \) (i.e. \(R \) is diagonal) or \(d \text{det}(W) / d \mu_{j} = 0 \) i.e. \(D \) does not depend on \(\mu \).