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Abstract

The expectation-maximization algorithm has been advocated recently by a&nomb
authors for fitting generalized linear mixed models. Since the E-step typicalyvew
analytically intractable integrals, one approach is to approximate them by Miarte
methods. However, in practice, the Monte Carlo sample sizes requiredrfeergence are
often prohibitive. In this paper we show how randomized sphericallratégration (Genz
and Monahan, 1997) can be implemented in such cases, and can dramegitadlg the
computational burden of implementing EM. After a standardizing transformatiolnange
to polar coordinates results in a double integral consisting of a one dimahaegral
on the real line and a multivariate integral on the surface of a unit sptitmedomized
guadratures are used to approximate both of them. An attractive feattime cdndom-
ized spherical-radial rule is that its implementation only involves generating $tandard
probability distributions. The resulting approximation at the E-step has thedba fixed
effects generalized linear model likelihood and so a standard iterativeighted least
squares procedure may be utilized for the M-step. We illustrate the methattidy finod-
els to two well-known data sets, and compare our results with those of otersu
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1 Introduction

The class of generalized linear models (GLM), introducedNiByder and Wedderburn (1972),
includes many popular statistical methods as special caigels as logistic regression for binary
responses, loglinear models for counts, as well as nornearyhlinear models. McCullagh
and Nelder (1989) provide an extensive introduction to tipgct A restriction is that the GLM
assumes that the observations are independent of one gratieh is not the case, for instance,
in longitudinal studies, or if the observations are clusterGeneralized linear mixed models
(GLMMs) extend the GLM class by including random effects lieit linear predictor. The
result is a mixed model containing both fixed effects and oameffects. Recent reviews of
generalized linear mixed models and related techniquedsaéyund in McCulloch and Searle
(2001), Demidenko (2004), Hobert (2000), and Agresti e{Z400).

The likelihood function for a GLMM involves an integral ouvée distribution of the random
effects. The integral is generally intractable analyticand hence some form of approximation
must be used in practice to enable likelihood-based inéerenhis paper concerns the use of an
approximation at the E-step of the expectation-maximira{EM) algorithm (Dempster et al.,
1977). As with the likelihood the E-step involves an intedadé integral, and while standard
numerical integration techniques can be utilized in low elisions problems, it is common
in practice for the dimension to be too large for such methddise solution is to use Monte
Carlo approximation, as proposed by Wei and Tanner (1990% dpproach, which is known
as Monte Carlo EM (MCEM), has been applied in the GLMM contexdeneral recent papers
including McCulloch (1994,1997), Booth and Hobert (1999) &adfo et al. (2005).

The main contribution of this paper is the use of randomizgliescal-radial (SR) inte-
gration rules, developed in a series of paper by Genz and Moné1998,1998,1999), at the
E-step of the EM algorithm in the GLMM context. These ruleséhbeen shown to dramati-
cally outperform standard integration rules in many situe, resulting in remarkably accurate
approximations even in relatively high dimensional proide

The implementation of MCEM using SR rules described here igl@mnative to their use
to directly approximate the likelihood function, as propad®y Clarkson and Zhan (2002). The
issue of which approach is to be preferred boils down to the pnd cons of EM versus direct
maximization. For example, the EM algorithm is known to beyaable in a broad range of
problems, and the numerical examples discussed latersrptper appear to substantiate this
in the GLMM context. Also, the M-step of EM in the GLMM conteistequivalent to fitting a
GLM, and can therefore be accomplished using the standaatiitely reweighted least squares



(IRLS) algorithm.

The use of SR rules at the E-step of the MCEM algorithm subsignéxpands the applica-
bility of the method by reducing the sample size requirecafmurate Monte Carlo approxima-
tion. Furthermore, the randomized SR rules are simpler pdyapan competing methods cited
above in that they only involve simulation from two standdistributions. The end result is an
algorithm that is relatively simple, generally applicalded practical to implement.

The structure of the article is as follows. In the next sectie give a general description
of the GLMM and introduce an example which we use to illugtradtation and methodology
throughout the paper. Section 3 outlines the expectatiarimization algorithm in a GLMM
setting. Spherical-radial integration rules are expldiire Section 4. Section 5 contains a
simulation study comparing MCEM with the direct maximizatiapproach of Clarkson and
Zhan (2002). In section 6, we illustrate the proposed allgoriby fitting GLMMs to three
well-known datasets. We conclude with some discussion atiGe?7.

2 Generalized Linear Mixed Models

2.1 Themodd

A generic description of a GLMM is as follows. L&t = (yi1,...,ym,) .4 = 1,...,n, be
independent random response vectors.x;etindz;; denote knowrp- andg-dimensional co-
variate vectors associated with tjth component of;;. Dependence between the components

of they;’s is induced by unobservabledimensional random effects vectors,

u’ = (ul,. .., u)T ~iid. Ny (0, ), i=1,....n,

7 » Yiq
whereX is assumed to be positive definite. Conditionally on the ramdéfectu’, the univari-

ate componentsy;, j = 1,...,n; are independent with means, = E(y;;|u}’), satisfying
g(pij) = xgﬁ + ziTjuiE , (2.1)

whereg is ap-dimensional parameter and-) is a link function. SinceX is positive definite
there exists a unique x ¢ lower-triangular matrixD with positive diagonal entries such that
¥ = DD7, and hence

4

u; = Du;, where u; ~iid. N,(0,I,), i=1,...,n.

Therefore, without loss of generality, we may consider tiseridbutionally equivalent form,



in place of (2.1) (Demidenko, 2004, page 411). Notice thatwag write
TDuZ = vech(z;u] ) Tvech(D) ,

wherevech is vectorization operation. However, the matfixis often characterized by a few
non-zero entries. Let be ag,-dimensional vector containing these elements. Thene tvasts
aq(q+1)/2 x q. matrix G of rankg. such that

vech(D) = Go

If £, is such that
&, = G" vech(z;u]),

then (2.2) can be rewritten as

9(pig) = x;B + €0 . (2.3)

It is sometimes more convenient to use a shorter form
=T
9(pij) = XY,

wherex;; = (x}, §; ) andy = (8",67)" is a(p + ¢.)-dimensional parameter of interest.
Specification of a GLMM is completed by describing variapiln the responsey;;, about
its conditional meary;;, using an exponential model of the form

fWislig) = explwi; 0y — b(035)] + c(vij) }

for some functiorc(-), canonical parametek; = (b')~*(u;;), and known weightsv;;. The
observable likelihood function for parametgrs therefore
L(ysy) = | f(ylwy)o(u,Ing)du (2.4)
Ra

wherey = (y{,...,y;)" andu = (uf,...,u7)", ¢(u, L) = [T, T}, &(us), whereg(-)
is the standard normal density, and

f(ylu;ep) = H flyilug; ¥ HHeXp{wm 1Y — 0(035)] + c(yis) }

i=1 j=1
Sinced;; is usually a nonlinear function af;, in most practical cases the integral in (2.4) cannot
be evaluated explicitly. Therefore, the maximization a#ijZannot be accomplished without
an approximation of the integral.
The follow subsection describes a specific applicationlinig a GLMM with a multivariate
random effect.



2.2 Minnesota health plan data

Waller and Zelterman (1997) reported data from longitudieaords on 121 senior citizens
enrolled in a health plan in Minnesota. The data consist @efiimber of times each subject
visited or called the medical clinic in each of four 6-mon#ripds. Lety;,; denote the count for
subjecti, eventk (visit or call) , and period. It is natural to consider subject as a random factor,
but event and period as fixed. Hence we consider a Poissdndagimodel withy;;,|u; ~
Poisson(u), and

logmkl:a0+ak+bl+ckl+’n+vik+wﬂ, k:1,2, and l:1,2,3,4, (25)

whereaq is an interceptg, is the fixed effect of evert, b, is the fixed effect of period, ¢, is
fixed evenk period interaction;; is a random effect associated with subjgat;, is a random
subjectk event interaction, and;; is a random subjegtperiod interaction. The model therefore
involves a 7-dimensional random effect

E .
u;, = (’WaUilaUiQawilawiQawi?an)y 1=1,...,121,

(2

associated with the subjectWe suppose that

w ~iid N;(0,%), i=1,...,121

where
03 0 0
Y= 0 O'gIQ 0
0 0 0314

We achieve identifiability by setting, = by = c14 = €21 = o0 = 23 = ¢o4 = 0. The fixed
effects parameter in (2.3) is then

/6 - (CLO)alJb17b27b3701176127cl3) .

To eliminate the double indeX, and express the model in the form in (2.3), we consider a

new inder = 4(]{?—1)—|—l ACCOfdineg,(yil, ey Yid, Yis, - - 7yi8) = (yiu, e Yl Yioty - - - 7yi24)
and(uil, ey May Hisy - e 7,“2'8) = (ﬂill, ey Mgty 21y .- - ,,ui24), for eachi = 1,...,121. In ad-

dition, we introduce
xij = (1, Ij<j<ay, Ljmt orsps Lgma or6ys Lijms or 1y Lpjmys Ljmoy, Ijmsy) ™

and

zi; = (1, Iji<j<ay, Is<j<sy, Lij=1 orsys Lij=2 ore6ys Lij=3 or7ys Lij—torsy)”



wherely,) is the indicator of eventl. With these definitions (2.3) becomes

9(pg) = log (i) = xi;B + &j0 = X,

T
whereo = (0, 0y, Uu)T, Eij = (Zij1Wi1, ZijoWi2 + Zij3Wis, Zijalia + Zijslis + Zijelie + Zij7lir),
andui ~ 1.1.d. N7(0, I7>

The observable likelihood for the model is

121

H f yz|uza (uiaI7)dui )

where theith integral in the product is equal to

<%>7/2<£[1yjj!> /R7exp< Zexp{x ¢}+Z?Jw - luTul)d“m

and cannot be evaluated analytically.

Any multi-index model can be reduced to the form (2.4), inmaiksir manner, by appropriate
re-indexing of variables.

3 Monte Carlo expectation maximization

The expectation maximization (EM) algorithm introducedtie seminal work of Dempster
et al. (1977) is a widely-used iterative method for findingkimaum likelihood estimates when
there is missing or unobserved data. The EM algorithm carppéeal in the GLMM context
because the random effects are unobserved. The algorittiudes two steps at each iteration,
an E-step and an M-step. Let*) denote the value of the parameter after iteratiofthen the
E-step at iteratios + 1 involves the computation of the so-callédfunction,

Q") = E|i(w:y, wly; 4

where
(;y,u) =log f(y,u;9)

is the complete datdoglikelihood for parametexy. The M-step consists of finding**"
which maximizes thé)-function; that is

PO = arg ma Qplyp")



Under mild regularity conditions the observable likelikofunction (2.4) is non-decreasing
when evaluated along the EM sequer{més) *, (see e.g. Wu, 1983). Hence, the sequence
converges to a local maximum of the likelihood surface.

In the GLMM setting, the complete data loglikelihood is givay

l($;y,u Z (Z{ww ii¥i — 0(0i5)] + c(yi) } — %uiTuz)

Hence, the&)-function calculated at the iteration+ 1 is

QI ZE[Z{wm sty = b0)) + elug)} — Sl i ]

However, part of this expression,

ZE[Z% c(ys;) u Twilys 9|,

can be eliminated because it does not depend on the paragheterd has no effect on the
M-step. Therefore, without loss of generality, we shallsidar the reduce@-function,

Q| S) Z E[Zwm ij¥i; — b(0ij)]]y; "7/)(5 }

in what follows.
Notice that

Qly ZE[ alyi i )y | (3.1)

where

Yza u;; P Z wz] l]yl] ’U)] .

Hence, theth term in the®-function is given by

E a(}’i,uﬁlb)b’i;lb(s)} :/R a(YiauiQ":b)f(ui‘YiS"/J(s))duia (3.2)

where

(3.3)

Flulys ) = L0 u; ) exp {a(yz"““"b(S)) - %uiTui}
U;|yi; = s =
Flyi ™) Jro €XD {a(yi,ui;'zp(s ) —suf uz}dui
As noted earlier the denominator in (3.3) is generally amnadjly intractable in the GLMM
context. In such cases Wei and Tanner (1990) suggested>xappttong the expectations in



the Q-function by Monte Carlo averages, resulting in the so-daNMdCEM algorithm. For
example, if it is possible to generate i.i.d. vectt{)tél), e ,uEM)} from (3.3), a Monte Carlo
approximation ta) is given by

n

"M'%b S) ZZ alyi, u; a Zziw” e(k Yij — Oz(jk))] (3.4)

=1 k=1 =1 k=1 j=1
Whereeg?) involves the parameter vectap, via the identities,

Hg?) = (b’>*1[u§§“)] : u§§“’ = g’l(nff)), and 775;?) —x'8+ 52(;?>T _ i(’“)sz,

Notice that)(¢/|1)*)) has the form of the loglikelihood of a GLM, and hence the Mpstan be
performed by using the standard IRLS fitting algorithm (Mc@gh and Nelder, 1989, Section
2.5).

However, direct i.i.d. sampling from (3.3) is usually noa$gble. To overcome this, McCul-
loch (1994,1997), suggested using MCMC with stationaryrithstion (3.3) to approximate the
E-step. In contrast, two i.i.d sampling schemes, rejectempling and importance sampling,
were proposed by Booth and Hobert (1999) to generate a Monte €anple following (3.3).

It should be noted that MCEM is not deterministic. One mustéase MC sample size to
decrease Monte Carlo error and to ensure convergence. Amaitdd rule was described in
Booth and Hobert (1999) where estimates of Monte Carlo erroe wsed to determine if the
Monte Carlo sample size is sufficient. Caffo et al. (2005) satggka data-driven algorithm
based on the EM ascent property. The algorithm not only deters the sample size for each
iteration of MCEM but also provides a convenient stopping oy monitoring the change in
the Q-function.

A serious drawback of implementations of MCEM to date, in théiM context, is that the
MC sample size required for convergence can be so large aake the algorithm impractical.
In the next section, we describe a new implementation of MCEWgithe spherical-radial
integration rule (Genz and Monahan (1998,1998,1999), hvt@n dramatically reduce the MC
sample size required for convergence.

4 Spherical-radial ruleimplementation of MCEM

4.1 TheE-step
Recall that we need to approximate the integral (3 2). In wé(d.3) the integral has the form,
Ju e
I(c;p) = =
qu



wherep(u) is an unnormalized probability density ang1) is a matrix-valued function with
elements integrable with respectjitu). The SR approximation method can be described in

four steps.

1. Standardization of the density.

Letu* denote the mode of the unnormalized dengity), and letH = —9? log p(u*)/0udu”
be the negative of its Hessian matrix evaluated at the moaesiypose tha is posi-
tive definite, and denote its Cholesky decompositiody? (H'/2)”. After changing the
variable of integration fronm to @ = H'/?(u — u*) the integral becomes

ey - QS o clp(ida i, o(i)p(i)di

P T Tde(w) [, pwyda [, pla)da

whereé() = c(u*+H"V21) andp(a) = p(u*+H"/21). The densityj is standardized
in the sense that it attains its maximuroaand—H(0) = —9log (0)/0uda” = 1,

2. The spherical-radial transformation.

At this step we change the variables of integration fi@to (r, s), wherer is the radius,
ands is a point on the surface of the unit sphéfg that is, = rs, ands”s = 1. The

integral now becomes

, fo fU p(rs)ri—'dsdr
(c:p) = fo fU rs)ra-ldsdr

According to Genz and Monahan (1997) “the value of changing,ts) is that the most
common failure of the normal approximation to the posteappears in the tails, goes
after the SR transformation to the raditis Notice that, if we denote

Gnum(T’):/U ¢(rs)p(rs)ds and Gden(r):/Uﬁ(rs)ds, 4.1)

q

then -
fo Grum(r)rd~1dr

I(c;p) = .
(c,p) fooo Gden(r)rq‘ldr

3. Approximation of the spherical integral.

Givenr, the inner spherical integrél(r) may be approximated by

N* s
=D vadrQvi)p(rQ;vi) (4.2)

j=1 k=1



whereQq,...,Qy* are i.i.d. random orthogonal matrices,, ..., v, are points on the
¢-dimensional unit sphere, ard;;,} are weights chosen such thaty(r) = G(r). A
particular choice is a simplex rule with= ¢ + 1, vj, = 1/N*(¢+ 1), andvy, ..., v,
the vertices of the regulardimensional simplex with coordinates given by

0 fori<j<i<qg+1
(q+1)(Q—z’+1))1/2 .
Vij = ( qlqg—1i+2) / fori =
_ q+1 >12 ) )
(<q_i+1)q(q_i+2) forl<i<j<g+1

Some other possible rules are described in Genz and Mon&B&id)(

4. Approximation of the radial integral.

The remaining one dimensional radial integral,
/00 G(r)ri~tdr = /00 G(r)ri~ exp(r?/2) exp(—r?/2)dr (4.3)
0 0
can be approximated in a variety of ways. For example, thid-tider rule
N(R)G(0) +1(R)G(R) exp(R*/2). (4.4)

whereR ~ x,.2, 1(R) = 1 — q/R?, and»(R) = q/R?, gives an unbiased estimate of
the radial integral (4.3) and it is exact for integrating iculoinctions with respect to the
kernelr?—le=7*/2, A general method of constructing an unbiased degree 1 rule is
given in Genz and Monahan (1997).

The final approximations of the integrals in (4.1) are i.aderages of approximations of the
form (4.4). Specifically, ifRy, ..., Ry~ are i.i.d.x 42, then

M*

o0 1 . .
-1 ~ . . . . . 2
/0 G dr ~ Zl: {M(R)G0) + n(R)Gi(R) exp(R2/2)}  (4.5)
Whereéz-(r) is of the form (4.2) with i.i.d. random orthogonal matric€y;, ..., Q;n+. Com-

bining approximations to all the integrals in (3.1) resuita Monte Carlo SR approximation to
the Q-function. Notice, that since th@-function involves a ratio of integrals, the approxima-
tion is not unbiased. However, the Law of Large Numbers esssasymptotic unbiasedness as
M* goes to infinity. In particular, the approximation convergs)M* — oo with N* = 1.
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42 M-Step.

The randomized SR rule approximation to th€unction is of the form (3.4). However, in the
SR case the subscriptis an index for different combinations of independgnt . variables,
random orthogonal matrices, vertices of the ghdimensional simplex, and terms in the radial
rule approximation. Thus, the value df in (3.4) is proportional to the product/*N*, of the
two samples sizes defined in the previous section. NotideQhaeed only be determined up
to a constant of proportionality, since the constant hasmaact on the maximization step. In
particular, it is not necessary to divide by the Monte Carlogie size in (3.4). Itis also impor-
tant to recognize that in the SR rule approximation the V\teig.hf’?), are (random) functions of
the current parameter estimaté”. In this section we will discuss the maximization@ffor a
generic iteration, and so the dependence wiill be suppressed.

The right side of (3.4) has the form of a GLM loglikelihood itieh the response;;, occurs
M times with associated pseudo-covariate vectdls, . .., ). LetX!" = (7, ..., x{)7,

andX; = (X7 . XM That is, X; is the (pseudo) covariate matrix associated with

)

theith response vector. Similarly, 18" = diag{w!}’}"",, andW, = blockdiagd W{"' }}* ,

where
w®
1) ?
gy 2V ()
andV = b"(v')~! is the GLM variance function. Finally, & = (X7,..., X" andW =

blockdiagd W, }_,. Then, the IRLS algorithm for maximizing (3.4) involves aévely solving

the weighted least squares equations

(XTWX) 1t = XTWy (4.6)

wherey is a working response vector with componer@lgi) = ni(f) + g'(u,(f))(yij — u,(f))

(McCullagh and Nelder, 1989, Section 2.5). After each iteoacthe values of, W, andX,
must be updated to reflect the new valua/of

The dimensions of the matricé®/ andX are N M x NM andN M x (p+ ¢*) respectively,
where N = > .n;. The value of VA/ can be very large in practice. For example, in the
Minnesota clinic dataly = 121-8 = 968, and hence, even with relative small values, the size
of the pseudo data set can easily be in the tens or even hisnofrdtbusands. A key attraction
of randomized SR approximation rules is that their accurasylts in a dramatic reduction in
the value ofM that is necessary compared to less sophisticated Monte @aplaximation
methods. However, it is not necessary to store the efMirand X matrices to carry out the

11



IRLS update in (4.6), since each side of the equation can beng@ased into computations
involving the individual pseudo-covariate vectors. Sfieally

n M
XTWX — Z Z ng)TWEk)X(k Z Z Z w” ij ZJ :
i=1 k=1 i=1 k=1 j=1
and

n M n n;
XTWy = 303 XETWISH = 3OS S
i=1 k=1 =1

k=1 j=1
4.3 Ascent-based MCEM-SR and stopping rule

Booth and Hobert (1999) and Caffo et al. (2005) propose metfowaontrolling Monte Carlo
sample size when implementing MCEM. The approach of Caffo.etsdbased on the ascent

cally,
AQUHY = Q" |pt)) — Qv |yp)) > 0
implies
[ y) = 1(pW]y) 4.7)

However, in MCEMAQ®+Y is approximated by

AQEHY = Q" V) — Q@ w)

and the inequalityAQ*Y) > 0 no longer guarantees (4.7).
In fact, since the value chQ*Y is a a ratio of two Monte Carlo means, its standard error,
oag» Can be estimated using the delta method (Stuart and Ord, 19%-7), and this can be

used to construct a lower confidence limit fhe)**1) of the form
AQUT) — 26,6 (4.8)

The approach advocated by Caffo et al. is to compute a lowardotithe form (4.8) after each
iteration. If the lower bound is positive, the algorithm tiones as usual. However, if the lower
bound is negativeyy**) calculated with Monte Carlo sample sizeis rejected and the MCEM
iteration is repeated with an increased Monte Carlo samp&nsi+ m/k, for somek. Caffo

et al. (2005, equation 15) suggest that the increase sheudtermined by the standard sample
size formula for a formal test ek Q=+ = 0 versusAQ+Y > 0 with type 1 error equal to
and type 2 error equal 16, using estimates o) ando ¢ from the previous iteration

ms+1,start == max{ms,starta O_QAQ<2a + 25)2/(AQ(S)>2} (49)

12



The deterministic EM algorithm is usually terminated whéarmges in thé)-function (and
hence in the loglikelihood) are negligible. Even thoughdh&unction is not observed directly
in implementations of the MCEM algorithm, one can calculateupper confidence limit for
A(Q after each iteration, in a similar manner to the lower lidiaffo et al., 2005, equation 13).
The algorithm may then be judged to have converged if thempmend is negligibly small (but
non-negative), that is,

AQEY 4 2 5ag <. (4.10)

In addition to (4.10) we require the relative change in theapeeter estimates at thie + 1)th

iteration to be sufficiently small; that is

it — )]

max < 09 (4.11)
e o]+

Hence, the convergence is declared if both (4.10) and (4dltl)

5 A simulation study

Clarkson and Zhan (2002) proposed the use of SR rules to lgieggroximate GLMM likeli-
hood functions. They illustrated their approach with a datian study involving the following
logit-binomial model with random effects. Lgt; denote theith binary observation on subject
i, forj =1,...,7andi = 1,...,100. Suppose that, observations on different subjects are
independent, but the repeated binary outcomes on a giveridaodl share a subject specific
random effects vecton?, whereu}” ~ i.i.d. N5(0,X), with ¥ = diag{c?};_,. Conditional on
the subject specific effects, the binary outcomes are intkgpe Bernoulli variates with success
probabilities,r;;, satisfying

log () =x5,8+ zlu¥,

1 — J J

wherex;; = z;;, j = 1,...,7, are columns of the matrix

1 1 1 1 1 1 1
Ii<s0) Ii<s0) Iiicsoy  Iri<soy Igi<soy  Igi<soy  Igi<soy
-3 —2 —1 0 1 2 3
—3li<s0y —20pi<s0y  —1i<s0y 0 Iiicsoy 2Qg<s0y 31pi<s0
Cil CiZ CiS Ci4 Ci5 Ci6 Ci7
with ¢;; ~ i.i.d.N(0, 1). One hundred data sets were generated according to thisiechigh

B=(-25,1,-1,0.5,-05)T andX = I;.

13



For each dataset we applied the MCEM-SR algorithm utilizimgtandomized third-order
radial rule approximation, and a starting Monte Carlo sarsfe of M/* = 20. The algorithm
was initially run with the number of orthogonal rotations = 10, and then repeated with
N* = 1 with the results essentially identical for the two values\of This is consistent with
the findings of Genz and Monahan (1997), that the main sourear@bility in (4.5) is in the
approximation of the (outer) radial, as opposed to the (ns@herical integral. We setandg
in (4.9) andy; and~, to 0.05. For (4.11)4; was chosen to be equal @01 andd, = 0.005.

The maximum sample siz&/;, . for MCEM-SR ranged fron820 to 2680 with an average
of 1310. The average parameter estimates are given in Table 5, altmghe average of their
estimated standard errors, and their empirical standaoiser Table 5 gives the correspond-
ing results obtained using a direct SR rule approximatiothélikelihood withA/* = 1500
and N* = 1, followed by Gauss-Newton maximization to obtain the MLE nGergence was
declared if (4.11) withy; = 0.001 andé = 0.005 held for three consecutive iterations. This
approach is similar to that used by Clarkson and Zhan (200&)ein simulation study, except
that they used a fixed quadrature rule to approximate thalriategral rather than a randomized
third-order rule. As can be seen from the tables, direct mepdtion of the loglikelihood and
indirect maximization via the EM algorithm give essentiadlentically results in this simulation
study.

An advantage of the iterative MCEM approach is that the MontéoGample size is au-
tomatically calibrated to the specific dataset and modebprimciple, the direct maximization
approach could be modified to include this adaptive featHi@vever, the EM algorithm also
exploits the exponential family structure of the condiibmodel (given the random effects),
resulting in an algorithm which is potentially more stablecomplex settings. In the next sec-
tion we illustrate the use of our MCEM-SR approach in two vkelbwn examples in which
GLMM fitting has proven to be problematic.

6 Examples

For the two examples considered in this section we use theetider rule for the radial integral
and the simplex rule to approximate the spherical integrdl W* fixed at 1. Clarkson and
Zhan (2002) provide some explanation on why one rotation beagufficient for Spherical-
Radial approximations in GLMM settings. The MCEM-SR algamtlvas run with an initial
Monte Carlo sample size df/* = 20. We seta = § = 71 = 7 = 0.05 andd; = 0.001 and
02 = 0.005, k = 5.
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b1 o s P s
Truep -2.5000| 1.0000| -1.0000| 0.5000| -0.5000

Averagef; -2.5511| 1.0239| -1.0092| 0.4701| -0.4846
Average§dﬁ) 0.3855| 0.4835| 0.2250| 0.3308| 0.1908
Empirical SC{B) 0.4551| 0.4658| 0.2252| 0.3546| 0.1984

01 02 03 04 05
Trueo 1.0000| 1.0000| 1.0000| 1.0000| 1.0000
Averages 0.8734| 0.9250| 0.9511| 0.9914| 0.9647

Averagesgo) 0.8215| 1.2613| 0.2478| 0.5427| 0.3313
Empirical sds) | 0.3517| 0.5521| 0.2238| 0.4645| 0.3487

Table 1. MCEM-SR estimates f@ ando. The values given are the average estimates, their
average estimated standard errors based on the obseryen iRformation matrix, and their
empirical standard errors over 100 simulated datasets.

A fa Bs Ba Bs
Truegs -2.5000| 1.0000| -1.0000| 0.5000| -0.5000

Averagefs -2.5499| 1.0192| -1.0087| 0.4633| -0.4843
Averagese3) | 0.4615| 0.5371| 0.2853| 0.3947| 0.2303
Empirical sd3) | 0.4540| 0.4685| 0.2249| 0.3551| 0.1986

01 02 03 04 05
Trueo 1.0000| 1.0000| 1.0000| 1.0000| 1.0000
Averages 0.8670| 0.9050| 0.9472| 1.0073| 0.9663

Averagesg o) 0.5472| 0.8004| 0.2811| 0.5496| 0.3174
Empirical sdo) | 0.3663| 0.5954| 0.2252| 0.4617| 0.3517

Table 2: Direct MC-SR estimates férando. The values given are the average estimates, their
average estimated standard errors based on the observenl FRormation matrix, and their
empirical standard errors over 100 simulated datasets.
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6.1 Minnesota Health Plan Data

First we present the results for the Minnesota Health Plaa (idaller and Zelterman, 1997),
and the Poisson linear mixed model described in Section&.@milar model was proposed
by Booth et al. (2003) for this data, the difference being thatevent by period interaction
term was not included in their analysis. Table 3 gives the Mtineates and their standard
errors. Convergence was declared after 69 iterations With= 820 and /), = 1370. For
comparison we fit the same model using the SAS/GLIMMIX (SA80%2) procedure which
employs a restricted pseudo-likelihood method by defalihe other estimates reported are
obtained by using the Bayesian software package WinBUGS{pigelhalter et al., 1999).
The values given for WinBUGS are medians and standard dewgabf the marginal posterior
distributions obtained using the following non-infornvatipriorsag, ay, by, bo, b3, ¢11, ¢12, €13 ~
N(0,10°) and1/02,1/02,1/02 ~ U[0,10°]. As we can see the estimates of all parameters
except that of the constant agree with each other. The MCEMSRate ofq, is close to
that of WinBUGS. Also, based on the ML estimates and theimdded errors it appears that
there is a significant event by period interaction. To corapaur results to those of Booth
et al. (2003) we refit the model without the interaction teffable 4 gives the results for this
model. In this case the MCEM-SR algorithm converged atrith iteration with A3, = 720
andM; .. = 1130. Our results are in agreement with the estimates obtained W¢inBUGS

and the SAS/GLIMMIX procedures. However, the estimate®riegl by Booth et al. (2003)
appear to be incorrect.

6.2 Salamander Mating Data

The salamander data from McCullagh and Nelder (1989, pag2<l83) have been analyzed
by numerous authors using linear mixed effects models fargiresponses (Booth and Hobert,
1999; Karim and Zeger, 1992; Lee and Nelder, 1996; McCull@®B4; Sung and Geyer, 2006).
Here we consider the logit-normal GLMM described by Booth Bliatbert, which is a frequen-
tist version of the Bayesian model proposed by Karim and Zedex noted by Booth and
Hobert, Sung and Geyer, and others, maximum likelihoodnediton for this model is quite
challenging.

The data, as described in McCullagh and Nelder (1989), aiuse three experiments, each
involving two groups consisting of twenty salamanders, 1@idghbutt (R) and 10 Whiteside
(W), with 5 males and 5 females in each case. Thus, there arpds¥ible hetersexual crosses
in each group. However, due to time constraints, only 60sa®svere permitted in each group.
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With Interaction

MCEM-SR

GLIMMIX

WinBUGS

Qo

ai

0.868 (0.096)
-0.165 (0.127)

0.961 (0.104)
-0.164 (0.106)

0.844 (0.109)
0.160 (0.110)

b -0.091 (0.095) -0.089 (0.109) -0.085 (0.111)
b, 0.414(0.098) 0.394(0.104) 0.422 (0.110)
b;  0.491(0.109) 0.468 (0.103) 0.498 (0.110)
cii 0.246 (0.097) 0.240(0.103) 0.243 (0.103)
c1»  0.104 (0.080) 0.101(0.095) 0.102 (0.097)
13 -0.085(0.099) -0.084 (0.096) -0.088 (0.097)
o, 0.493(0.082) 0.491(0.081) 0.511(0.078)
o, 0.608(0.056) 0.578(0.048) 0.605 (0.053)
o, 0.625(0.040) 0.593(0.034) 0.627 (0.038)

Table 3: Parameter estimates for the Poisson linear miXedteimodel (2.5) obtained by max-

imum likelihood and using the SAS/GLIMMIX and WinBUGS sofive packages.

Without Interaction

MCEM-SR

GLIMMIX

WinBUGS

BCFH

Qo
Qa2
by
bs
by
Oy
O-V

Ow

0.763 (0.109)
0.109 (0.109)
0.435 (0.108)
0.425 (0.106)
-0.028 (0.904)
0.499 (0.084)
0.604 (0.059)
0.623 (0.043)

0.854 (0.099)
0.110 (0.083)
0.414 (0.093)
0.402 (0.093)
-0.026 (0.096)
0.493 (0.080)
0.574 (0.048)
0.591 (0.034)

0.744 (0.107)
0.111 (0.087)
0.481 (0.176)
0.470 (0.176)
-0.021 (0.102)
0.510 (0.082)
0.598 (0.052)
0.624 (0.038)

1.64 (0.001)
-0.12 (0.001)
0.35 (0.001)
0.23 (0.001)
0.17 (0.001)
1.04 (0.091)
0.60 (0.053)
0.60 (0.036)

Table 4: Parameter estimates for the Poisson linear miXedteimodel (2.5) obtained by max-

imum likelihood and using the SAS/GLIMMIX and WinBUGS so#tive packages.
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Two of the experiments involved the same set of 40 salamandtawever, following McCul-
lagh and Nelder (1989, page 441) and Booth and Hobert (192%i08€¢7.3) we shall analyze
the study as though it consisted of 6 independent groups saROnanders, each resulting in
60 binary indicators of successful mating.

Let m;; denote the probability of successful mating for pain group:, j = 1,...,60,
i=1,...,6. Letu/ andu” denote random effect vectors associated with the 10 femald @
male salamanders in groupand suppose thati/”, u™”)” ~ Du;, whereu; ~ Ny (0,1), and

1 ) (2

I 0
D— Orlio 10
010 onlio

Booth and Hobert (1999) consider a logit model of the form

log< Tij ) — x"'8 +2;Du,, (6.1)

1-— 7rij
wherex;; is a4 x 1 vector indicating the type of cross, and is a20 x 1 vector with 1’s at the
coordinates corresponding to pajrand O’s otherwise. The parameter vector

B = (BR/Ra ﬁR/Wa 5W/R> BW/W)T

consists of unknown fixed coefficients associated with the fgpes of cross, with subscripts
indicating the species of the female and male respectively.

The likelihood in this example involves six intractable @@iensional integrals. Maximum
likelihood estimates of the parameter vectpr= (3", o”)” obtained using the MCEM-SR
algorithm are displayed in Table 5. To compare our resultk wiose of Booth and Hobert
(1999) we started with® = (0,0,0,0, 1, 1) . The algorithm converged after 48 iterations with
Mjs = 365 and)M; . = 840. The MCEM-SR estimates agree with the ones obtained by Booth
and Hobert (1999) who used an MCEM algorithm involving impade sampling at E-step.
Booth and Hobert (1999) reported convergence in 51 iteratidheir Monte Carlo sample size
increased from 1000 at the beginning to 66,169 at the endeoMGEM algorithm. Hence,
much less computational effort was required in MCEM-SR tainethe same level of accuracy.

In addition, Table 5 contains the Bayesian estimates baseatbosinformative priors of
Karim and Zeger (1992) (KZ). Booth and Hobert (1999) also regabthe estimates produced by
SAS%GLIMMIX macro (GLIMMIX(BH)) which was not the part of thEAS/STAT package
at that time. We refitted the model using the current versioBAS/GLIMMIX with default
settings which estimates a model using restricted maximseugo-likelihood (GLIMMIX).
Finally, we fitted the model running SAS/GLIMMIX with the chavailable pseudo-likelihood
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ﬂR/R BR/W /BW/R /BW/W arf Om

MCEM-SR 1.022 0325 -1.944 0999 1.180 1.116

(0.224) (0.241) (0.274) (0.240) (0.152) (0.159)
BH 1.030 0.320 -1.950 0.990 1.183 1.118
SG 1.004 0534 -1.783 1268 1.099 1.167

(0.161) (0.271) (0.101) (0.606) (0.149) (0.237)
KZ 1.03 034 -198 107 150 1.36
GLIMMIX 0.787 0.247 -1.500 0.777 0.848 0.797

(0.320) (0.311) (0.352) (0.320) (0.194) (0.193)
GLIMMIX(BH) 0.87 028 -1.69 095 116  0.96

Table 5: Maximum likelihood estimates for the logit-normalodel (6.1) obtained us-
ing the the MCEM-SR algorithm along with their standard esror Maximum likeli-
hood estimates reported by Booth and Hobert (1999), and by Sund Geyer (2006)
(http://www.stat.umn.edu/geyer/bernor/), as well asgos means obtained from a Bayesian
analysis of the same model in Karim and Zeger (1992) are diecomparison.

estimation techniques (not reported here) such as MSPL, RsiRLMMPL (see SAS (2005)).

The results were far from ours and those of Booth and Hobe® Q1 I herefore, it appears that
SAS/GLIMMIX cannot handle the estimation of a GLMM involgigh-dimensional integrals

as in the Salamander data case.

7 Discussion

In this paper, we have proposed a computationally feasib@EM algorithm for fitting a
GLMM with multivariate normal random effects. Our MCEM-SRyatithm can be general-
ized to GLMMs with another symmetric distribution for ramdeffects such as the multivariate
t-distribution. In our computations we found the 3rd ordderfor radial integral and the sim-
plex rule with one rotation for the spherical part were quteequate. However, one could
further refine the method by using the 5th order or more gégera 1 order rule for the radial
part. In addition, there are other rules available to apipnate the multivariate integral over the
surface of the unig-dimensional sphere, such as the antipodal and extendgdesinules.

The results show that MCEM-SR performs very well both in teafthe accuracy the esti-
mates and the Monte Carlo sample size to attain this accultaglyould not be a surprise that
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we needed a Monte Carlo sample sizé $f0 for Minnesota data with @&dimensional random
effect, and only840 for Salamander data involving2d-dimensional random effect. The Monte
Carlo sample size in MCEM-SR is determined not only by the dsienof the random effect
but also by the number of independent subjects observed folows from the fact that the
variance of a MC approximation of a sumsof;-dimensional integrals is proportional to

For another example of the acccurary of the SR rule consiaefdliowing. In the sala-
mander example, when we ran our algorithm with the Monte Csataple sizeél/* fixed at2,
MCEM converged to the MLE from Table 5 and then oscillated acbiw with a MC standard
error of approximately 0.1. This is quite impressive coasitg the challenges reported by
Sung and Geyer (2006) for this model.

In conclusion, the use of randomized spherical radial natisgn at the E-step of the EM
algorithm leads to a computational feasible algorithm fainfy GLMMs. We have illustrated
the power of the method with some challenging examples. Tétaad is also relatively simple
to program, and we are in the process of developing a R packagglement it.
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