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Abstract

The expectation-maximization algorithm has been advocated recently by a number of

authors for fitting generalized linear mixed models. Since the E-step typically involves

analytically intractable integrals, one approach is to approximate them by MonteCarlo

methods. However, in practice, the Monte Carlo sample sizes required for convergence are

often prohibitive. In this paper we show how randomized spherical-radial integration (Genz

and Monahan, 1997) can be implemented in such cases, and can dramaticallyreduce the

computational burden of implementing EM. After a standardizing transformation, a change

to polar coordinates results in a double integral consisting of a one dimensional integral

on the real line and a multivariate integral on the surface of a unit sphere.Randomized

quadratures are used to approximate both of them. An attractive feature ofthe random-

ized spherical-radial rule is that its implementation only involves generating from standard

probability distributions. The resulting approximation at the E-step has the form of a fixed

effects generalized linear model likelihood and so a standard iteratively reweighted least

squares procedure may be utilized for the M-step. We illustrate the method by fitting mod-

els to two well-known data sets, and compare our results with those of other authors.
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1 Introduction

The class of generalized linear models (GLM), introduced byNelder and Wedderburn (1972),

includes many popular statistical methods as special cases, such as logistic regression for binary

responses, loglinear models for counts, as well as normal theory linear models. McCullagh

and Nelder (1989) provide an extensive introduction to the topic. A restriction is that the GLM

assumes that the observations are independent of one another, which is not the case, for instance,

in longitudinal studies, or if the observations are clustered. Generalized linear mixed models

(GLMMs) extend the GLM class by including random effects in their linear predictor. The

result is a mixed model containing both fixed effects and random effects. Recent reviews of

generalized linear mixed models and related techniques maybe found in McCulloch and Searle

(2001), Demidenko (2004), Hobert (2000), and Agresti et al.(2000).

The likelihood function for a GLMM involves an integral overthe distribution of the random

effects. The integral is generally intractable analytically, and hence some form of approximation

must be used in practice to enable likelihood-based inference. This paper concerns the use of an

approximation at the E-step of the expectation-maximization (EM) algorithm (Dempster et al.,

1977). As with the likelihood the E-step involves an intractable integral, and while standard

numerical integration techniques can be utilized in low dimensions problems, it is common

in practice for the dimension to be too large for such methods. One solution is to use Monte

Carlo approximation, as proposed by Wei and Tanner (1990). This approach, which is known

as Monte Carlo EM (MCEM), has been applied in the GLMM context inseveral recent papers

including McCulloch (1994,1997), Booth and Hobert (1999) andCaffo et al. (2005).

The main contribution of this paper is the use of randomized spherical-radial (SR) inte-

gration rules, developed in a series of paper by Genz and Monahan (1998,1998,1999), at the

E-step of the EM algorithm in the GLMM context. These rules have been shown to dramati-

cally outperform standard integration rules in many situations, resulting in remarkably accurate

approximations even in relatively high dimensional problems.

The implementation of MCEM using SR rules described here is analternative to their use

to directly approximate the likelihood function, as proposed by Clarkson and Zhan (2002). The

issue of which approach is to be preferred boils down to the pros and cons of EM versus direct

maximization. For example, the EM algorithm is known to be very stable in a broad range of

problems, and the numerical examples discussed later in this paper appear to substantiate this

in the GLMM context. Also, the M-step of EM in the GLMM contextis equivalent to fitting a

GLM, and can therefore be accomplished using the standard iteratively reweighted least squares
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(IRLS) algorithm.

The use of SR rules at the E-step of the MCEM algorithm substantially expands the applica-

bility of the method by reducing the sample size required foraccurate Monte Carlo approxima-

tion. Furthermore, the randomized SR rules are simpler to apply than competing methods cited

above in that they only involve simulation from two standarddistributions. The end result is an

algorithm that is relatively simple, generally applicable, and practical to implement.

The structure of the article is as follows. In the next section we give a general description

of the GLMM and introduce an example which we use to illustrate notation and methodology

throughout the paper. Section 3 outlines the expectation-maximization algorithm in a GLMM

setting. Spherical-radial integration rules are explained in Section 4. Section 5 contains a

simulation study comparing MCEM with the direct maximization approach of Clarkson and

Zhan (2002). In section 6, we illustrate the proposed algorithm by fitting GLMMs to three

well-known datasets. We conclude with some discussion in Section 7.

2 Generalized Linear Mixed Models

2.1 The model

A generic description of a GLMM is as follows. Letyi = (yi1, . . . , yini
)T , i = 1, . . . , n, be

independent random response vectors. Letxij andzij denote knownp- andq-dimensional co-

variate vectors associated with thejth component ofyi. Dependence between the components

of theyi’s is induced by unobservableq-dimensional random effects vectors,

uΣ
i = (uΣ

i1, . . . , u
Σ
iq)

T ∼ i.i.d. Nq(0,Σ), i = 1, . . . , n ,

whereΣ is assumed to be positive definite. Conditionally on the random effectuΣ
i , the univari-

ate components,yij, j = 1, . . . , ni are independent with means,µij = E(yij|u
Σ
i ), satisfying

g(µij) = xT
ijβ + zT

iju
Σ
i , (2.1)

whereβ is ap-dimensional parameter andg(·) is a link function. SinceΣ is positive definite

there exists a uniqueq × q lower-triangular matrixD with positive diagonal entries such that

Σ = DDT , and hence

uΣ
i

d
= Dui, where ui ∼ i.i.d. Nq(0, Iq), i = 1, . . . , n .

Therefore, without loss of generality, we may consider the distributionally equivalent form,

g(µij) = xT
ijβ + zT

ijDui (2.2)
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in place of (2.1) (Demidenko, 2004, page 411). Notice that wemay write

zT
ijDui = vech(ziju

T
i )Tvech(D) ,

wherevech is vectorization operation. However, the matrixD is often characterized by a few

non-zero entries. Letσ be aq∗-dimensional vector containing these elements. Then, there exists

a q(q + 1)/2 × q∗ matrixG of rankq∗ such that

vech(D) = Gσ

If ξij is such that

ξij = GT vech(ziju
T
i ) ,

then (2.2) can be rewritten as

g(µij) = xT
ijβ + ξT

ijσ . (2.3)

It is sometimes more convenient to use a shorter form

g(µij) = x̃T
ijψ ,

wherex̃ij = (xT
ij, ξ

T
ij)

T andψ = (βT ,σT )T is a(p+ q∗)-dimensional parameter of interest.

Specification of a GLMM is completed by describing variability in the response,yij, about

its conditional mean,µij, using an exponential model of the form

f(yij|µij) = exp{wij[θijyij − b(θij)] + c(yij)}

for some functionc(·), canonical parameterθij = (b′)−1(µij), and known weightswij. The

observable likelihood function for parameterψ is therefore

L(ψ;y) =

∫

Rq

f(y|u;ψ)φ(u, Inq)du (2.4)

wherey = (yT
1 , . . . ,y

T
n )T andu = (uT

1 , . . . ,u
T
n )T , φ(u, Inq) =

∏n
i=1

∏q
r=1 φ(uir), whereφ(·)

is the standard normal density, and

f(y|u;ψ) =
n
∏

i=1

f(yi|ui;ψ) =
n
∏

i=1

ni
∏

j=1

exp{wij[θijyij − b(θij)] + c(yij)}

Sinceθij is usually a nonlinear function ofui, in most practical cases the integral in (2.4) cannot

be evaluated explicitly. Therefore, the maximization of (2.4) cannot be accomplished without

an approximation of the integral.

The follow subsection describes a specific application involving a GLMM with a multivariate

random effect.
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2.2 Minnesota health plan data

Waller and Zelterman (1997) reported data from longitudinal records on 121 senior citizens

enrolled in a health plan in Minnesota. The data consist of the number of times each subject

visited or called the medical clinic in each of four 6-month periods. Letyikl denote the count for

subjecti, eventk (visit or call) , and periodl. It is natural to consider subject as a random factor,

but event and period as fixed. Hence we consider a Poisson loglinear model withyikl|u
Σ
i ∼

Poisson(µikl), and

log µikl = a0 + ak + bl + ckl + γi + υik + ωil, k = 1, 2, and l = 1, 2, 3, 4 , (2.5)

wherea0 is an intercept,ak is the fixed effect of eventk, bl is the fixed effect of periodl, ckl is

fixed event×period interaction,γi is a random effect associated with subjecti, υik is a random

subject×event interaction, andωil is a random subject×period interaction. The model therefore

involves a 7-dimensional random effect

uΣ
i = (γi, υi1, υi2, ωi1, ωi2, ωi3, ωi4), i = 1, . . . , 121 ,

associated with the subjecti. We suppose that

uΣ
i ∼ i.i.d. N7(0,Σ), i = 1, . . . , 121

where

Σ =









σ2
γ 0 0

0 σ2
υI2 0

0 0 σ2
ωI4









We achieve identifiability by settinga2 = b4 = c14 = c21 = c22 = c23 = c24 = 0. The fixed

effects parameter in (2.3) is then

β = (a0, a1, b1, b2, b3, c11, c12, c13) .

To eliminate the double indexkl, and express the model in the form in (2.3), we consider a

new indexj = 4(k−1)+l. Accordingly,(yi1, . . . , yi4, yi5, . . . , yi8) = (yi11, . . . , yi14, yi21, . . . , yi24)

and(µi1, . . . , µi4, µi5, . . . , µi8) = (µi11, . . . , µi14, µi21, . . . , µi24), for eachi = 1, . . . , 121. In ad-

dition, we introduce

xij = (1, I{1≤j≤4}, I{j=1 or 5}, I{j=2 or 6}, I{j=3 or 7}, I{j=1}, I{j=2}, I{j=3})
T

and

zij = (1, I{1≤j≤4}, I{5≤j≤8}, I{j=1 or 5}, I{j=2 or 6}, I{j=3 or 7}, I{j=4 or 8})
T
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whereI{A} is the indicator of eventA. With these definitions (2.3) becomes

g(µij) = log(µij) = xT
ijβ + ξT

ijσ = x̃T
ijψ

whereσ = (σγ, συ, σω)T , ξT
ij = (zij1ui1, zij2ui2 + zij3ui3, zij4ui4 + zij5ui5 + zij6ui6 + zij7ui7),

andui ∼ i.i.d.N7(0, I7).

The observable likelihood for the model is

L(ψ;y) =
121
∏

i=1

∫

R7

f(yi|ui;ψ)φ(ui, I7)dui ,

where theith integral in the product is equal to

( 1

2π

)7/2(
8
∏

j=1

1

yij!

)

∫

R7

exp
(

−

8
∑

j=1

exp{x̃T
ijψ} +

8
∑

j=1

yijx̃
T
ijψ −

1

2
uT

i ui

)

dui ,

and cannot be evaluated analytically.

Any multi-index model can be reduced to the form (2.4), in a similar manner, by appropriate

re-indexing of variables.

3 Monte Carlo expectation maximization

The expectation maximization (EM) algorithm introduced inthe seminal work of Dempster

et al. (1977) is a widely-used iterative method for finding maximum likelihood estimates when

there is missing or unobserved data. The EM algorithm can be applied in the GLMM context

because the random effects are unobserved. The algorithm includes two steps at each iteration,

an E-step and an M-step. Letψ(s) denote the value of the parameter after iterations. Then the

E-step at iterations+ 1 involves the computation of the so-calledQ-function,

Q(ψ|ψ(s)) = E
[

l(ψ;y,u)|y;ψ(s)
]

,

where

l(ψ;y,u) = log f(y,u;ψ)

is the complete dataloglikelihood for parameterψ. The M-step consists of findingψ(s+1)

which maximizes theQ-function; that is

ψ(s+1) = arg max
ψ∈Ψ

Q(ψ|ψ(s))
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Under mild regularity conditions the observable likelihood function (2.4) is non-decreasing

when evaluated along the EM sequence{ψ(s)}∞s=0 (see e.g. Wu, 1983). Hence, the sequence

converges to a local maximum of the likelihood surface.

In the GLMM setting, the complete data loglikelihood is given by

l(ψ;y,u) =
n
∑

i=1

(

ni
∑

j=1

{wij[θijyij − b(θij)] + c(yij)} −
1

2
uT

i ui

)

Hence, theQ-function calculated at the iterations+ 1 is

Q(ψ|ψ(s)) =
n
∑

i=1

E
[

ni
∑

j=1

{wij[θijyij − b(θij)] + c(yij)} −
1

2
uT

i ui|yi;ψ
(s)
]

However, part of this expression,

n
∑

i=1

E
[

ni
∑

j=1

wijc(yij) −
1

2
uT

i ui|yi;ψ
(s)
]

,

can be eliminated because it does not depend on the parameterψ, and has no effect on the

M-step. Therefore, without loss of generality, we shall consider the reducedQ-function,

Q(ψ|ψ(s)) =
n
∑

i=1

E
[

ni
∑

j=1

wij[θijyij − b(θij)]|yi;ψ
(s)
]

,

in what follows.

Notice that

Q(ψ|ψ(s)) =
n
∑

i=1

E
[

a(yi,ui;ψ)|yi;ψ
(s)
]

(3.1)

where

a(yi,ui;ψ) =

ni
∑

j=1

wij[θijyij − b(θij)] .

Hence, theith term in theQ-function is given by

E
[

a(yi,ui;ψ)|yi;ψ
(s)
]

=

∫

Rq

a(yi,ui;ψ)f(ui|yi;ψ
(s))dui , (3.2)

where

f(ui|yi;ψ
(s)) =

f(yi,ui;ψ
(s))

f(yi;ψ
(s))

=
exp

{

a(yi,ui;ψ
(s)) − 1

2
uT

i ui

}

∫

Rq exp
{

a(yi,ui;ψ
(s)) − 1

2
uT

i ui

}

dui

(3.3)

As noted earlier the denominator in (3.3) is generally analytically intractable in the GLMM

context. In such cases Wei and Tanner (1990) suggested approximating the expectations in
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theQ-function by Monte Carlo averages, resulting in the so-called MCEM algorithm. For

example, if it is possible to generate i.i.d. vectors{u
(1)
i , . . . ,u

(M)
i } from (3.3), a Monte Carlo

approximation toQ is given by

Q̂(ψ|ψ(s)) =
1

M

n
∑

i=1

M
∑

k=1

a(yi,u
(k)
i ;ψ) =

1

M

n
∑

i=1

M
∑

k=1

ni
∑

j=1

wij[θ
(k)
ij yij − b(θ

(k)
ij )] (3.4)

whereθ(k)
ij involves the parameter vector,ψ, via the identities,

θ
(k)
ij = (b

′

)−1[µ
(k)
ij ] , µ

(k)
ij = g−1(η

(k)
ij ) , and η

(k)
ij = xT

ijβ + ξ
(k)T
ij σ = x̃

(k)T
ij ψ .

Notice thatQ̂(ψ|ψ(s)) has the form of the loglikelihood of a GLM, and hence the M-step can be

performed by using the standard IRLS fitting algorithm (McCullagh and Nelder, 1989, Section

2.5).

However, direct i.i.d. sampling from (3.3) is usually not feasible. To overcome this, McCul-

loch (1994,1997), suggested using MCMC with stationary distribution (3.3) to approximate the

E-step. In contrast, two i.i.d sampling schemes, rejectionsampling and importance sampling,

were proposed by Booth and Hobert (1999) to generate a Monte Carlo sample following (3.3).

It should be noted that MCEM is not deterministic. One must increase MC sample size to

decrease Monte Carlo error and to ensure convergence. An automated rule was described in

Booth and Hobert (1999) where estimates of Monte Carlo error were used to determine if the

Monte Carlo sample size is sufficient. Caffo et al. (2005) suggested a data-driven algorithm

based on the EM ascent property. The algorithm not only determines the sample size for each

iteration of MCEM but also provides a convenient stopping rule by monitoring the change in

theQ-function.

A serious drawback of implementations of MCEM to date, in the GLMM context, is that the

MC sample size required for convergence can be so large as to make the algorithm impractical.

In the next section, we describe a new implementation of MCEM using the spherical-radial

integration rule (Genz and Monahan (1998,1998,1999), which can dramatically reduce the MC

sample size required for convergence.

4 Spherical-radial rule implementation of MCEM

4.1 The E-step

Recall that we need to approximate the integral (3.2). In viewof (3.3) the integral has the form,

I(c; p) =

∫

Rq c(u)p(u)du
∫

Rq p(u)du
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wherep(u) is an unnormalized probability density andc(u) is a matrix-valued function with

elements integrable with respect top(u). The SR approximation method can be described in

four steps.

1. Standardization of the density.

Letu∗ denote the mode of the unnormalized densityp(u), and letH = −∂2 log p(u∗)/∂u∂uT

be the negative of its Hessian matrix evaluated at the mode. We suppose thatH is posi-

tive definite, and denote its Cholesky decomposition byH1/2(H1/2)T . After changing the

variable of integration fromu to ũ = H1/2(u − u∗) the integral becomes

I(c; p) =
det(H1/2)

∫

Rq c̃(ũ)p̃(ũ)dũ

det(H1/2)
∫

Rq p̃(ũ)dũ
=

∫

Rq c̃(ũ)p̃(ũ)dũ
∫

Rq p̃(ũ)dũ
,

wherec̃(ũ) = c(u∗+H−1/2ũ) andp̃(ũ) = p(u∗+H−1/2ũ). The densitỹp is standardized

in the sense that it attains its maximum at0 and−H̃(0) = −∂2 log p̃(0)/∂ũ∂ũT = Iq.

2. The spherical-radial transformation.

At this step we change the variables of integration fromũ to (r, s), wherer is the radius,

ands is a point on the surface of the unit sphereUq; that is,ũ = rs, andsT s = 1. The

integral now becomes

I(c; p) =

∫∞

0

∫

Uq
c̃(rs)p̃(rs)rq−1dsdr

∫∞

0

∫

Uq
p̃(rs)rq−1dsdr

According to Genz and Monahan (1997) “the value of changing to (r, s) is that the most

common failure of the normal approximation to the posteriorappears in the tails, goes

after the SR transformation to the radiusr”. Notice that, if we denote

Gnum(r) =

∫

Uq

c̃(rs)p̃(rs)ds and Gden(r) =

∫

Uq

p̃(rs)ds , (4.1)

then

I(c; p) =

∫∞

0
Gnum(r)rq−1dr

∫∞

0
Gden(r)rq−1dr

.

3. Approximation of the spherical integral.

Givenr, the inner spherical integralG(r) may be approximated by

Ĝ(r) =
N∗

∑

j=1

s
∑

k=1

νjkc̃(rQjvk)p̃(rQjvk) , (4.2)
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whereQ1, . . . ,QN
∗ are i.i.d. random orthogonal matrices,v1, . . . ,vs are points on the

q-dimensional unit sphere, and{νjk} are weights chosen such thatEĜ(r) = G(r). A

particular choice is a simplex rule withs = q + 1, νjk = 1/N∗(q + 1), andv1, . . . ,vq+1

the vertices of the regularq-dimensional simplex with coordinates given by

vij =























0 for 1 ≤ j < i < q + 1
(

(q + 1)(q − i+ 1)
q(q − i+ 2)

)1/2

for i = j

−
(

q + 1
(q − i+ 1)q(q − i+ 2)

)1/2

for 1 ≤ i < j ≤ q + 1

.

Some other possible rules are described in Genz and Monahan (1997).

4. Approximation of the radial integral.

The remaining one dimensional radial integral,
∫ ∞

0

Ĝ(r)rq−1dr =

∫ ∞

0

Ĝ(r)rq−1 exp(r2/2) exp(−r2/2)dr , (4.3)

can be approximated in a variety of ways. For example, the third-order rule

γ1(R)Ĝ(0) + γ2(R)Ĝ(R) exp(R2/2) , (4.4)

whereR ∼ χq+2, γ1(R) = 1 − q/R2, andγ2(R) = q/R2, gives an unbiased estimate of

the radial integral (4.3) and it is exact for integrating cubic functions with respect to the

kernelrq−1e−r2/2. A general method of constructing an unbiased degree2n + 1 rule is

given in Genz and Monahan (1997).

The final approximations of the integrals in (4.1) are i.i.d.averages of approximations of the

form (4.4). Specifically, ifR1, . . . , RM∗ are i.i.d.χq+2, then

∫ ∞

0

G(r)rq−1dr ≈
1

M∗

M∗

∑

i=1

{

γ1(Ri)Ĝi(0) + γ2(Ri)Ĝi(Ri) exp(R2
i /2)

}

(4.5)

whereĜi(r) is of the form (4.2) with i.i.d. random orthogonal matrices,Qi1, . . . ,QiN∗ . Com-

bining approximations to all the integrals in (3.1) resultsin a Monte Carlo SR approximation to

theQ-function. Notice, that since theQ-function involves a ratio of integrals, the approxima-

tion is not unbiased. However, the Law of Large Numbers ensures asymptotic unbiasedness as

M∗ goes to infinity. In particular, the approximation converges asM∗ → ∞ with N∗ = 1.
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4.2 M-Step.

The randomized SR rule approximation to theQ-function is of the form (3.4). However, in the

SR case the subscriptk is an index for different combinations of independentχq+2 variables,

random orthogonal matrices, vertices of the theq-dimensional simplex, and terms in the radial

rule approximation. Thus, the value ofM in (3.4) is proportional to the product,M∗N∗, of the

two samples sizes defined in the previous section. Notice that Q̂ need only be determined up

to a constant of proportionality, since the constant has no impact on the maximization step. In

particular, it is not necessary to divide by the Monte Carlo sample size in (3.4). It is also impor-

tant to recognize that in the SR rule approximation the weights,w(k)
ij , are (random) functions of

the current parameter estimateψ(s). In this section we will discuss the maximization ofQ̂ for a

generic iteration, and so the dependence ons will be suppressed.

The right side of (3.4) has the form of a GLM loglikelihood in which the response,yij, occurs

M times with associated pseudo-covariate vectors,x̃
(1)
ij , . . . , x̃

(M)
ij . LetX(k)

i = (x̃
(k)
i1 , . . . , x̃

(k)
ini

)T ,

andXi = (X
(1)T
i , . . . ,X

(M)T
i )T . That is,Xi is the (pseudo) covariate matrix associated with

theith response vector. Similarly, letW(k)
i = diag{ω(k)

ij }ni

j=1, andWi = blockdiag{W(k)
i }M

k=1,

where

ω
(k)
ij =

w
(k)
ij

g′(µ
(k)
ij )2V (µ

(k)
ij )

,

andV = b
′′

(b′)−1 is the GLM variance function. Finally, letX = (XT
1 , . . . ,X

T
n )T andW =

blockdiag{Wi}
n
i=1. Then, the IRLS algorithm for maximizing (3.4) involves iteratively solving

the weighted least squares equations

(XTWX)−1ψ = XTWỹ (4.6)

where ỹ is a working response vector with components,ỹ
(k)
ij = η

(k)
ij + g′(µ

(k)
ij )(yij − µ

(k)
ij )

(McCullagh and Nelder, 1989, Section 2.5). After each iteraction the values of̃y, W, andX,

must be updated to reflect the new value ofψ.

The dimensions of the matrices,W andX areNM ×NM andNM × (p+ q∗) respectively,

whereN =
∑

i ni. The value ofNM can be very large in practice. For example, in the

Minnesota clinic data,N = 121·8 = 968, and hence, even with relative smallM values, the size

of the pseudo data set can easily be in the tens or even hundreds of thousands. A key attraction

of randomized SR approximation rules is that their accuracyresults in a dramatic reduction in

the value ofM that is necessary compared to less sophisticated Monte Carloapproximation

methods. However, it is not necessary to store the entireW andX matrices to carry out the
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IRLS update in (4.6), since each side of the equation can be decomposed into computations

involving the individual pseudo-covariate vectors. Specifically

XTWX =
n
∑

i=1

M
∑

k=1

X
(k)T
i W

(k)
i X

(k)
i =

n
∑

i=1

M
∑

k=1

ni
∑

j=1

ω
(k)
ij x̃

(k)
ij x̃

(k)T
ij ,

and

XTWỹ =
n
∑

i=1

M
∑

k=1

X
(k)T
i W

(k)
i ỹ

(k)
i =

n
∑

i=1

M
∑

k=1

ni
∑

j=1

ω
(k)
ij x̃

(k)
ij ỹ

(k)
ij .

4.3 Ascent-based MCEM-SR and stopping rule

Booth and Hobert (1999) and Caffo et al. (2005) propose methodsfor controlling Monte Carlo

sample size when implementing MCEM. The approach of Caffo et al. is based on the ascent

property of the EM algorithm, that the loglikelihood increases at each iteration. More specifi-

cally,

∆Q(s+1) = Q(ψ(s+1)|ψ(s)) −Q(ψ(s)|ψ(s)) ≥ 0

implies

l(ψ(s+1)|y) ≥ l(ψ(s)|y) (4.7)

However, in MCEM∆Q(s+1) is approximated by

∆Q̂(s+1) = Q̂(ψ(s+1)|ψ(s)) − Q̂(ψ(s)|ψ(s))

and the inequality,∆Q̂(s+1) ≥ 0 no longer guarantees (4.7).

In fact, since the value of∆Q̂(s+1) is a a ratio of two Monte Carlo means, its standard error,

σ∆Q̂, can be estimated using the delta method (Stuart and Ord, 1994, 10.5-7), and this can be

used to construct a lower confidence limit for∆Q(s+1) of the form

∆Q̂(s+1) − zγ1
σ̂∆Q̂ . (4.8)

The approach advocated by Caffo et al. is to compute a lower bound of the form (4.8) after each

iteration. If the lower bound is positive, the algorithm continues as usual. However, if the lower

bound is negative,ψ(s+1) calculated with Monte Carlo sample sizem is rejected and the MCEM

iteration is repeated with an increased Monte Carlo sample sizem + m/k, for somek. Caffo

et al. (2005, equation 15) suggest that the increase should be determined by the standard sample

size formula for a formal test of∆Q(s+1) = 0 versus∆Q(s+1) > 0 with type 1 error equal toα

and type 2 error equal toβ, using estimates of∆Q andσ∆Q from the previous iteration

ms+1,start = max{ms,start, σ
2
∆Q̂

(zα + zβ)2/(∆Q̂(s))2} (4.9)
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The deterministic EM algorithm is usually terminated when changes in theQ-function (and

hence in the loglikelihood) are negligible. Even though theQ-function is not observed directly

in implementations of the MCEM algorithm, one can calculate an upper confidence limit for

∆Q after each iteration, in a similar manner to the lower limit (Caffo et al., 2005, equation 13).

The algorithm may then be judged to have converged if the upper bound is negligibly small (but

non-negative), that is,

∆Q̂(s+1) + zγ2
σ̂∆Q ≤ ǫ. (4.10)

In addition to (4.10) we require the relative change in the parameter estimates at the(s + 1)th

iteration to be sufficiently small; that is

max
1≤i≤p+q∗

|ψ
(s+1)
i − ψ

(s)
i |

|ψ
(s)
i | + δ1

≤ δ2 (4.11)

Hence, the convergence is declared if both (4.10) and (4.11)hold.

5 A simulation study

Clarkson and Zhan (2002) proposed the use of SR rules to directly approximate GLMM likeli-

hood functions. They illustrated their approach with a simulation study involving the following

logit-binomial model with random effects. Letyij denote thejth binary observation on subject

i, for j = 1, . . . , 7 and i = 1, . . . , 100. Suppose that, observations on different subjects are

independent, but the repeated binary outcomes on a given individual share a subject specific

random effects vector,uΣ
i , whereuΣ

i ∼ i.i.d.N5(0,Σ), with Σ = diag{σ2
k}

5
k=1. Conditional on

the subject specific effects, the binary outcomes are independent Bernoulli variates with success

probabilities,πij, satisfying

log
( πij

1 − πij

)

= xT
ijβ + zT

iju
Σ
i ,

wherexij ≡ zij, j = 1, . . . , 7, are columns of the matrix


















1 1 1 1 1 1 1

I{i≤50} I{i≤50} I{i≤50} I{i≤50} I{i≤50} I{i≤50} I{i≤50}

−3 −2 −1 0 1 2 3

−3I{i≤50} −2I{i≤50} −1I{i≤50} 0 I{i≤50} 2I{i≤50} 3I{i≤50}

ζi1 ζi2 ζi3 ζi4 ζi5 ζi6 ζi7



















with ζij ∼ i.i.d.N(0, 1). One hundred data sets were generated according to this scheme with

β = (−2.5, 1,−1, 0.5,−0.5)T andΣ = I5.
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For each dataset we applied the MCEM-SR algorithm utilizing the randomized third-order

radial rule approximation, and a starting Monte Carlo samplesize ofM∗ = 20. The algorithm

was initially run with the number of orthogonal rotationsN∗ = 10, and then repeated with

N∗ = 1 with the results essentially identical for the two values ofN∗. This is consistent with

the findings of Genz and Monahan (1997), that the main source of variability in (4.5) is in the

approximation of the (outer) radial, as opposed to the (inner) spherical integral. We setα andβ

in (4.9) andγ1 andγ2 to 0.05. For (4.11)δ1 was chosen to be equal to0.001 andδ2 = 0.005.

The maximum sample sizeM∗
max for MCEM-SR ranged from820 to 2680 with an average

of 1310. The average parameter estimates are given in Table 5, alongwith the average of their

estimated standard errors, and their empirical standard errors. Table 5 gives the correspond-

ing results obtained using a direct SR rule approximation tothe likelihood withM∗ = 1500

andN∗ = 1, followed by Gauss-Newton maximization to obtain the MLE. Convergence was

declared if (4.11) withδ1 = 0.001 andδ = 0.005 held for three consecutive iterations. This

approach is similar to that used by Clarkson and Zhan (2002) intheir simulation study, except

that they used a fixed quadrature rule to approximate the radial integral rather than a randomized

third-order rule. As can be seen from the tables, direct maximization of the loglikelihood and

indirect maximization via the EM algorithm give essentially identically results in this simulation

study.

An advantage of the iterative MCEM approach is that the Monte Carlo sample size is au-

tomatically calibrated to the specific dataset and model. Inprinciple, the direct maximization

approach could be modified to include this adaptive feature.However, the EM algorithm also

exploits the exponential family structure of the conditional model (given the random effects),

resulting in an algorithm which is potentially more stable in complex settings. In the next sec-

tion we illustrate the use of our MCEM-SR approach in two well-known examples in which

GLMM fitting has proven to be problematic.

6 Examples

For the two examples considered in this section we use the third-order rule for the radial integral

and the simplex rule to approximate the spherical integral with N∗ fixed at 1. Clarkson and

Zhan (2002) provide some explanation on why one rotation maybe sufficient for Spherical-

Radial approximations in GLMM settings. The MCEM-SR algorithm was run with an initial

Monte Carlo sample size ofM∗ = 20. We setα = β = γ1 = γ2 = 0.05 andδ1 = 0.001 and

δ2 = 0.005, k = 5.
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β1 β2 β3 β4 β5

Trueβ -2.5000 1.0000 -1.0000 0.5000 -0.5000

Averageβ̂ -2.5511 1.0239 -1.0092 0.4701 -0.4846

Averageŝe(β̂) 0.3855 0.4835 0.2250 0.3308 0.1908

Empirical sd(β̂) 0.4551 0.4658 0.2252 0.3546 0.1984

σ1 σ2 σ3 σ4 σ5

Trueσ 1.0000 1.0000 1.0000 1.0000 1.0000

Averageσ̂ 0.8734 0.9250 0.9511 0.9914 0.9647

Averageŝe(σ̂) 0.8215 1.2613 0.2478 0.5427 0.3313

Empirical sd(σ̂) 0.3517 0.5521 0.2238 0.4645 0.3487

Table 1: MCEM-SR estimates forβ andσ. The values given are the average estimates, their

average estimated standard errors based on the observed Fisher information matrix, and their

empirical standard errors over 100 simulated datasets.

β1 β2 β3 β4 β5

Trueβ -2.5000 1.0000 -1.0000 0.5000 -0.5000

Averageβ̂ -2.5499 1.0192 -1.0087 0.4633 -0.4843

Averageŝe(β̂) 0.4615 0.5371 0.2853 0.3947 0.2303

Empirical sd(β̂) 0.4540 0.4685 0.2249 0.3551 0.1986

σ1 σ2 σ3 σ4 σ5

Trueσ 1.0000 1.0000 1.0000 1.0000 1.0000

Averageσ̂ 0.8670 0.9050 0.9472 1.0073 0.9663

Averageŝe(σ̂) 0.5472 0.8004 0.2811 0.5496 0.3174

Empirical sd(σ̂) 0.3663 0.5954 0.2252 0.4617 0.3517

Table 2: Direct MC-SR estimates forβ andσ. The values given are the average estimates, their

average estimated standard errors based on the observed Fisher information matrix, and their

empirical standard errors over 100 simulated datasets.
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6.1 Minnesota Health Plan Data

First we present the results for the Minnesota Health Plan data (Waller and Zelterman, 1997),

and the Poisson linear mixed model described in Section 2.2.A similar model was proposed

by Booth et al. (2003) for this data, the difference being thatthe event by period interaction

term was not included in their analysis. Table 3 gives the ML estimates and their standard

errors. Convergence was declared after 69 iterations withM∗
69 = 820 andM∗

max = 1370. For

comparison we fit the same model using the SAS/GLIMMIX (SAS, 2005) procedure which

employs a restricted pseudo-likelihood method by default.The other estimates reported are

obtained by using the Bayesian software package WinBUGS (D.J.Spiegelhalter et al., 1999).

The values given for WinBUGS are medians and standard deviations of the marginal posterior

distributions obtained using the following non-informative priorsa0, a1, b1, b2, b3, c11, c12, c13 ∼

N(0, 106) and1/σ2
γ , 1/σ

2
ν , 1/σ

2
ω ∼ U [0, 103]. As we can see the estimates of all parameters

except that of the constant agree with each other. The MCEM-SRestimate ofa0 is close to

that of WinBUGS. Also, based on the ML estimates and their standard errors it appears that

there is a significant event by period interaction. To compare our results to those of Booth

et al. (2003) we refit the model without the interaction term.Table 4 gives the results for this

model. In this case the MCEM-SR algorithm converged at the76th iteration withM∗
76 = 720

andM∗
max = 1130. Our results are in agreement with the estimates obtained using WinBUGS

and the SAS/GLIMMIX procedures. However, the estimates reported by Booth et al. (2003)

appear to be incorrect.

6.2 Salamander Mating Data

The salamander data from McCullagh and Nelder (1989, pages 439-450) have been analyzed

by numerous authors using linear mixed effects models for binary responses (Booth and Hobert,

1999; Karim and Zeger, 1992; Lee and Nelder, 1996; McCulloch,1994; Sung and Geyer, 2006).

Here we consider the logit-normal GLMM described by Booth andHobert, which is a frequen-

tist version of the Bayesian model proposed by Karim and Zeger. As noted by Booth and

Hobert, Sung and Geyer, and others, maximum likelihood estimation for this model is quite

challenging.

The data, as described in McCullagh and Nelder (1989), arise from three experiments, each

involving two groups consisting of twenty salamanders, 10 Roughbutt (R) and 10 Whiteside

(W), with 5 males and 5 females in each case. Thus, there are 100possible hetersexual crosses

in each group. However, due to time constraints, only 60 crosses were permitted in each group.
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With Interaction

MCEM-SR GLIMMIX WinBUGS

a0 0.868 (0.096) 0.961 (0.104) 0.844 (0.109)

a1 -0.165 (0.127) -0.164 (0.106) -0.160 (0.110)

b1 -0.091 (0.095) -0.089 (0.109) -0.085 (0.111)

b2 0.414 (0.098) 0.394 (0.104) 0.422 (0.110)

b3 0.491 (0.109) 0.468 (0.103) 0.498 (0.110)

c11 0.246 (0.097) 0.240 (0.103) 0.243 (0.103)

c12 0.104 (0.080) 0.101 (0.095) 0.102 (0.097)

c13 -0.085 (0.099) -0.084 (0.096) -0.088 (0.097)

σγ 0.493 (0.082) 0.491 (0.081) 0.511 (0.078)

σν 0.608 (0.056) 0.578 (0.048) 0.605 (0.053)

σω 0.625 (0.040) 0.593 (0.034) 0.627 (0.038)

Table 3: Parameter estimates for the Poisson linear mixed effects model (2.5) obtained by max-

imum likelihood and using the SAS/GLIMMIX and WinBUGS software packages.

Without Interaction

MCEM-SR GLIMMIX WinBUGS BCFH

a0 0.763 (0.109) 0.854 (0.099) 0.744 (0.107) 1.64 (0.001)

a2 0.109 (0.109) 0.110 (0.083) 0.111 (0.087) -0.12 (0.001)

b2 0.435 (0.108) 0.414 (0.093) 0.481 (0.176) 0.35 (0.001)

b3 0.425 (0.106) 0.402 (0.093) 0.470 (0.176) 0.23 (0.001)

b4 -0.028 (0.904) -0.026 (0.096) -0.021 (0.102) 0.17 (0.001)

σγ 0.499 (0.084) 0.493 (0.080) 0.510 (0.082) 1.04 (0.091)

σν 0.604 (0.059) 0.574 (0.048) 0.598 (0.052) 0.60 (0.053)

σω 0.623 (0.043) 0.591 (0.034) 0.624 (0.038) 0.60 (0.036)

Table 4: Parameter estimates for the Poisson linear mixed effects model (2.5) obtained by max-

imum likelihood and using the SAS/GLIMMIX and WinBUGS software packages.
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Two of the experiments involved the same set of 40 salamanders. However, following McCul-

lagh and Nelder (1989, page 441) and Booth and Hobert (1999, Section 7.3) we shall analyze

the study as though it consisted of 6 independent groups of 20salamanders, each resulting in

60 binary indicators of successful mating.

Let πij denote the probability of successful mating for pairj in group i, j = 1, . . . , 60,

i = 1, . . . , 6. Letuf
i andum

i denote random effect vectors associated with the 10 female and 10

male salamanders in groupi, and suppose that(ufT
i ,umT

i )T ∼ Dui, whereui ∼ N20(0, I), and

D =

(

σfI10 010

010 σmI10

)

Booth and Hobert (1999) consider a logit model of the form

log
( πij

1 − πij

)

= xT
ijβ + zijDui , (6.1)

wherexij is a4× 1 vector indicating the type of cross, andzij is a20× 1 vector with 1’s at the

coordinates corresponding to pairj, and 0’s otherwise. The parameter vector

β = (βR/R,βR/W ,βW/R,βW/W )T

consists of unknown fixed coefficients associated with the four types of cross, with subscripts

indicating the species of the female and male respectively.

The likelihood in this example involves six intractable 20-dimensional integrals. Maximum

likelihood estimates of the parameter vectorψ = (βT ,σT )T obtained using the MCEM-SR

algorithm are displayed in Table 5. To compare our results with those of Booth and Hobert

(1999) we started withθ(0) = (0, 0, 0, 0, 1, 1) . The algorithm converged after 48 iterations with

M∗
48 = 365 andM∗

max = 840. The MCEM-SR estimates agree with the ones obtained by Booth

and Hobert (1999) who used an MCEM algorithm involving importance sampling at E-step.

Booth and Hobert (1999) reported convergence in 51 iterations. Their Monte Carlo sample size

increased from 1000 at the beginning to 66,169 at the end of the MCEM algorithm. Hence,

much less computational effort was required in MCEM-SR to reach the same level of accuracy.

In addition, Table 5 contains the Bayesian estimates based onnon-informative priors of

Karim and Zeger (1992) (KZ). Booth and Hobert (1999) also reported the estimates produced by

SAS%GLIMMIX macro (GLIMMIX(BH)) which was not the part of theSAS/STAT package

at that time. We refitted the model using the current version of SAS/GLIMMIX with default

settings which estimates a model using restricted maximum pseudo-likelihood (GLIMMIX).

Finally, we fitted the model running SAS/GLIMMIX with the other available pseudo-likelihood
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βR/R βR/W βW/R βW/W σf σm

MCEM-SR 1.022 0.325 -1.944 0.999 1.180 1.116

(0.224) (0.241) (0.274) (0.240) (0.152) (0.159)

BH 1.030 0.320 -1.950 0.990 1.183 1.118

SG 1.004 0.534 -1.783 1.268 1.099 1.167

(0.161) (0.271) (0.101) (0.606) (0.149) (0.237)

KZ 1.03 0.34 -1.98 1.07 1.50 1.36

GLIMMIX 0.787 0.247 -1.500 0.777 0.848 0.797

(0.320) (0.311) (0.352) (0.320) (0.194) (0.193)

GLIMMIX(BH) 0.87 0.28 -1.69 0.95 1.16 0.96

Table 5: Maximum likelihood estimates for the logit-normalmodel (6.1) obtained us-

ing the the MCEM-SR algorithm along with their standard errors. Maximum likeli-

hood estimates reported by Booth and Hobert (1999), and by Sung and Geyer (2006)

(http://www.stat.umn.edu/geyer/bernor/), as well as posterior means obtained from a Bayesian

analysis of the same model in Karim and Zeger (1992) are givenfor comparison.

estimation techniques (not reported here) such as MSPL, RMPL, and MMPL (see SAS (2005)).

The results were far from ours and those of Booth and Hobert (1999). Therefore, it appears that

SAS/GLIMMIX cannot handle the estimation of a GLMM involving high-dimensional integrals

as in the Salamander data case.

7 Discussion

In this paper, we have proposed a computationally feasible MCEM algorithm for fitting a

GLMM with multivariate normal random effects. Our MCEM-SR algorithm can be general-

ized to GLMMs with another symmetric distribution for random effects such as the multivariate

t-distribution. In our computations we found the 3rd order rule for radial integral and the sim-

plex rule with one rotation for the spherical part were quiteadequate. However, one could

further refine the method by using the 5th order or more general 2n+ 1 order rule for the radial

part. In addition, there are other rules available to approximate the multivariate integral over the

surface of the unitq-dimensional sphere, such as the antipodal and extended simplex rules.

The results show that MCEM-SR performs very well both in termsof the accuracy the esti-

mates and the Monte Carlo sample size to attain this accuracy.It should not be a surprise that
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we needed a Monte Carlo sample size of1370 for Minnesota data with a7-dimensional random

effect, and only840 for Salamander data involving a20-dimensional random effect. The Monte

Carlo sample size in MCEM-SR is determined not only by the dimension of the random effect

but also by the number of independent subjects observed. This follows from the fact that the

variance of a MC approximation of a sum ofn q-dimensional integrals is proportional ton.

For another example of the acccurary of the SR rule consider the following. In the sala-

mander example, when we ran our algorithm with the Monte Carlosample sizeM∗ fixed at2,

MCEM converged to the MLE from Table 5 and then oscillated around it with a MC standard

error of approximately 0.1. This is quite impressive considering the challenges reported by

Sung and Geyer (2006) for this model.

In conclusion, the use of randomized spherical radial integration at the E-step of the EM

algorithm leads to a computational feasible algorithm for fitting GLMMs. We have illustrated

the power of the method with some challenging examples. The method is also relatively simple

to program, and we are in the process of developing a R packageto implement it.
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