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Abstract

In recent years, sparse classification problems have emerged in many fields of study.

Finite mixture models have been developed to facilitate Bayesian inference where pa-

rameter sparsity is substantial. Classification with finite mixture models is based

on the posterior expectation of latent indicator variables. These quantities are typ-

ically estimated using the expectation-maximization (EM) algorithm in an empirical

Bayes approach or Markov chain Monte Carlo (MCMC) in a fully Bayesian approach.

MCMC is limited in applicability where high-dimensional data are involved because its

sampling-based nature leads to slow computations and hard-to-monitor convergence.

In this article, we investigate the feasibility and performance of variational Bayes (VB)

approximation in a fully Bayesian framework. We apply the VB approach to fully

Bayesian versions of several finite mixture models that have been proposed in bioinfor-

matics, and find that it achieves desirable speed and accuracy in sparse classification

with finite mixture models for high-dimensional data. Supplementary materials for

this article that contain detailed technical derivations are available online.
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1 Introduction

Variational Bayes (VB) methods in statistics arose from the family of variational approxima-

tion methods (Jaakkola, 2000) for performing approximate Bayesian inference for graphical

models with latent variables (Bishop, 1999; Attias, 2000; Beal, 2003). Since then, VB has

been promoted and employed in several fields of modern applications, such as signal pro-

cessing (Smı́dl and Quinn, 2005; Blei and Jordan, 2006; Tzikas et al., 2008), political science

(Grimmer, 2011), bioinformatics (Logsdon et al., 2010; Li and Sillanpää, 2012), and in med-

ical research such as brain imaging (Friston et al., 2011; Goldsmith et al., 2011). In the

early years, VB was applied to Gaussian mixture models, factor analysis, principal com-

ponent analysis, hidden Markov models, and their mixtures, for model learning (Bishop,

1999; Ghahramani and Beal, 2000; Bishop et al., 2002; Beal, 2003) and model selection

(Corduneanu and Bishop, 2001; Teschendorff et al., 2005; McGrory and Titterington, 2007).

Since then, VB has also been used for learning nonlinear latent variable models (Honkela

and Valpola, 2005; Salter-Townshend and Murphy, 2009), conducting functional regression

analysis (Goldsmith et al., 2011), dealing with missing data in regression (Faes et al., 2011),

and fitting location-scale models that contain elaborate distributional forms (Wand et al.,

2011). Recently, Logsdon et al. (2010) applies VB based on the model proposed by Zhang

et al. (2005) and shows that their VB solution outperforms single-marker testing in QTL

analysis. Li et al. (2011) utilizes VB as an alternative to Markov chain Monte Carlo (MCMC)

for hierarchical shrinkage-based regression models in QTL mapping with epistasis.

VB has been promoted as a fast deterministic method of approximating marginal poste-

rior distributions and therefore as an alternative to MCMC methods for Bayesian inference

(Beal, 2003; Bishop, 2006; Ormerod and Wand, 2010). Posterior means computed from VB

approximated marginal posterior density have been observed to be extremely accurate. For

example, Bishop (2006) illustrates the VB solution of a simple hierarchical Gaussian model.

Comparison with Gelman et al. (2003), where the true marginal posteriors for the same

model is provided, shows that the VB solution in Bishop (2006) recovers the posterior mean
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exactly. However, it has also been observed that VB often underestimates posterior variance.

This property is explained in Bishop (2006) to be due to the form of Kullback-Leibler di-

vergence employed in the VB theory. In the setting where n observations follow a Gaussian

distribution with large known variance and a zero-mean Gaussian-distributed mean whose

precision is assigned a Gamma prior, Rue et al. (2009) uses a simple latent Gaussian model

to illustrate that VB may underestimate posterior variance of the precision parameter by

a ratio of O(n). Ormerod (2011) proposes a grid-based method (GBVA) that corrects the

variance in VB approximated marginal posterior densities for the same model.

Finite mixture models have been widely used for model-based classification (McLachlan

and Peel, 2004; Zhang et al., 2005). Mixtures of distributions provide flexibility in capturing

complex data distributions that cannot be well described by a single standard distribution.

Finite mixture models, most commonly finite Gaussian mixture models, facilitate classifica-

tion where each component distribution characterizes a class of “similar” data points.

Many problems in bioinformatics concern identifying sparse non-null features in a high-

dimensional noisy null features space. This naturally leads to sparse classification with a

finite mixture of “null” and “non-null” component distributions and latent indicator variables

of component membership. The two-groups model in Efron (2008) is a finite mixture model

with an implicit latent indicator variable for detection of non-null genes from a vast amount

of null genes in microarray analysis. Bayesian classification results are obtained based on

posterior expectation of the latent indicators. Typically, latent indicator variables are treated

as missing data for an EM algorithm to be implemented in an empirical Bayes approach.

Alternatively, fully Bayesian inference based on hierarchical structure of the model can be

conducted via MCMC which approximates marginal posterior distributions. Finite-mixture-

model-based classification allows strength to be borrowed across features in high-dimensional

problems, in particular “large p small n” problems where p, the number of features to be

classified, is several orders of magnitude greater than n, the sample size. However, in such

high-dimensional problems it is difficult to assess convergence of fully Bayesian methods
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implemented using MCMC algorithms and the computational burden may be prohibitive.

In the context of finite mixture models, model complexity prevents exact marginal posteri-

ors from being derived explicitly. For example, consider the following simple two-component

mixture model in a fully Bayesian framework, with observed data {dg} and known hyperpa-

rameters τ0, σ
2
τ0
, ψ0, σ

2
ψ0
, a0, b0, α1, α0:

dg|bg, τ, ψ, σ2 = (1− bg)N(τ, σ2) + bgN(τ + ψ, σ2), (1)

bg|p ∼ Bernoulli(p), τ ∼ N(τ0, σ
2
τ0

), ψ ∼ N(ψ0, σ
2
ψ0

),

σ2 ∼ IG(a0, b0), p ∼ Beta(α1, α0),

where IG(a, b) denotes an Inverse-Gamma distribution with shape a and scale b. Classifica-

tion is conducted based on the magnitude of the posterior mean of the latent indicator bg;

a posterior mean close to 1 indicating membership in the non-null group for feature g. The

Integrated Nested Laplace Approximations (INLA) framework is another popular approxi-

mate Bayesian method, introduced in Rue et al. (2009), whose implementation is available

in the R-INLA package (Martino and Rue, 2009). However, INLA does not fit any of the

mixture models mentioned above because they are not members of the class of latent Gaus-

sian models. In the context of model (1), numerical experiments show that MCMC produces

believable approximate marginal posterior densities which can be regarded as proxies of the

true marginal posteriors despite the label-switching phenomenon (Marin and Robert, 2007)

well-known for finite mixture models. In Section 2, we show that VB approximated densities

are comparable to MCMC approximated ones in terms of both posterior mean and variance

in this context, but VB achieves substantial gains in computational speed over MCMC.

More general finite mixture models are common for (empirical and fully) Bayesian in-

ference in high-dimensional application areas, such as bioinformatics. Computations for

the two-groups model in Smyth (2004), for example, are burdensome due to presence of

the gene-specific error variance and different variances for the two component distributions.

Fully Bayesian inference via MCMC procedures are limited in practicality due to heavy

computational burden resulting from the high-dimensionality of the data.
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Our objective in this article is to investigate the feasibility and performance of VB for

finite mixture models in sparse classification in a fully Bayes framework. We will see in later

sections that there are significant computational issues with MCMC implementations in this

context, making this approach impractical. In contrast, VB is fast, accurate, and easy to

implement due to its deterministic nature. Moreover, the VB algorithm results in a very

accurate classifier, despite the fact that it significantly underestimates the posterior variances

of model parameters in some cases. To our knowledge, GBVA has not been evaluated before

in this setting and our investigation indicates that it does not result in improved accuracy

while adding substantially to the computational burden.

The plan for this article is as follows. Section 2 reviews theory underlying the VB method

and approximation of marginal posterior densities via VB for the aforementioned simple two-

component mixture model. Motivation behind using a hierarchical mixture model framework

and implementation of VB for general finite mixture models are outlined in Section 3. We

illustrate application of VB via examples involving simulated and real data in Section 4.

Finally, we conclude with some discussion in Section 5. Many of the technical arguments are

given in the supplementary materials.

2 Variational Bayes

2.1 Overview of the VB method

VB is a deterministic estimation methodology based on a factorization assumption on the

approximate joint posterior distribution. This is a free-form approximation in that implemen-

tation of VB does not start with any assumed parametric form of the posterior distributions.

The free-form factors are approximate marginal posterior distributions that one tries to ob-

tain according to minimization of the Kullback-Leibler divergence between the approximate

joint posterior and the true joint posterior. As a tractable solution to the minimization

problem, the optimal factors depend on each other, which naturally leads to an iterative
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scheme that cycles through an update on each factor. The convergence of the algorithm

is monitored via a single scalar criterion. Ormerod and Wand (2010) and Chapter 10 of

Bishop (2006) present detailed introduction to VB in statistical terms. The VB approxima-

tion in this article refers to variational approximation to the joint and marginal posterior

distributions under, in terminology used in Ormerod and Wand (2010), the product density

(independence) restriction. The concept of a mean-field approximation has its roots in sta-

tistical physics and is a form of VB approximation under a more stringent product density

restriction that the approximate joint posterior fully factorizes. The basic VB theory is

outlined as follows.

Consider a Bayesian model with observed data y, latent variables x and parameters

Θ = {θ1,θ2, ...,θm}. Denote H = {x,Θ} as the collection of all unknown quantities.

The posterior density p(H|y) = p(y, H)/p(y) is not necessarily tractable due to the integral

involved in computing the marginal data density p(y). This intractability prevents comput-

ing marginal posterior densities such as p(θi|y) =
∫
p(H|y)d{−θi} where {−θi} refers to

H\{θi} = {x,θ1,θ2, ...,θi−1,θi+1, ...,θm}. Two key elements, namely minimization of the

Kullback-Leibler divergence and employment of the product density restriction, underpin the

VB algorithm. The Kullback-Leibler divergence gives rise to a scalar convergence criterion

that governs the iterative algorithm. Through the product density restriction one assumes

independence which allows derivation of tractable density functions.

For an arbitrary density for H, q(H),

log p(y) =

∫
q(H) log

(
p(y, H)

q(H)

)
dH +

∫
q(H) log

(
q(H)

p(H|y)

)
dH. (2)

The second integral on the right hand side of (2) is the Kullback-Leibler divergence between

q(H) and p(H|y), i.e. DKL(q(H)‖p(H|y)) which is non negative. Hence,

log p(y) ≥
∫
q(H) log

(
p(y, H)

q(H)

)
dH = Cq(y),

where Cq(y) denotes the lower bound on the log of the marginal data density. This lower

bound depends on the density q. Given a data set, log p(y) is a fixed quantity. This means

that if a density q is sought to minimize DKL(q(H)‖p(H|y)), q also maximizes Cq(y) making
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the lower bound a viable approximation to log p(y).

The product density restriction states that q(H) factorizes into some partition of H, i.e.

q(H) =
∏k

i=1 qi(hi), but the parametric form of the qi(hi) factors is not specified. It can

be shown that, under the product density restriction, the optimal qi(hi) takes the following

form (Ormerod and Wand, 2010):

qi(hi) ∝ exp{E−hi(log p(y, H))} (3)

for i = 1, .., k, where expectation is taken over all unknown quantities except hi with respect

to the density
∏k

j 6=i qj(hj).

Since each variational posterior qi(hi) depends on other variational posterior quantities,

the algorithm involves iteratively updating qi(hi), 1 ≤ i ≤ k until the increase in Cq(y),

computed in every iteration after each of the updates qi(hi), 1 ≤ i ≤ k has been made, is

negligible. Upon convergence, approximate marginal posterior densities q∗i(hi), 1 ≤ i ≤ k

are obtained, as well as an estimate Cq∗(y) of the log marginal data density log p(y).

2.2 Practicality

As noted in Faes et al. (2011), under mild assumptions convergence of the VB algorithm is

guaranteed (Luenberger and Ye, 2008, pg. 253). Bishop (2006) refers to Boyd and Vanden-

berghe (2004) and states that convergence is guaranteed because the lower bound Cq(y) is

convex with respect to each of the factors qi(hi). Convergence is easily monitored through

the scalar quantity Cq(y). Moreover, upon convergence, since Cq∗(y) approximates log p(y),

VB can be used to compare solutions produced under the same model but with different

starting values or different orders of updating the q-densities. Because the optimal set of

starting values corresponds to the largest Cq∗(y) upon convergence, starting values can be de-

termined empirically with multiple runs of the same VB algorithm. Experiments on starting

values are generally undemanding due to high computational efficiency of the VB method,

and are especially useful for problems where the true solutions are multimodal.

Computational convenience of VB is achieved if conjugate priors are assigned for model
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parameters and the complete-data distribution belongs to the exponential family. Beal (2003)

describes models that satisfy these conditions as conjugate-exponential models. In these

models the approximate marginal posterior densities qi(hi) take the conjugate form and the

VB algorithm only requires finding the characterizing parameters. The induced conjugacy

plays an important role in producing analytical solutions. Feasibility of VB for models with

insufficient conjugacy is an open research area.

In practice, it suffices to impose some relaxed factorization of q(H) as long as the fac-

torization allows derivation of a tractable solution. Although, in many cases, the chosen

product density restriction leads to an induced product form of factors of q(H), the imposed

factorization and induced factorization of q(H) are generally not equivalent and may lead to

different posterior independence structures.

As an introductory example, consider a simple fully Bayesian model with a N(µ, σ2) data

distribution and a bivariate Normal-Inverse-Gamma prior p(µ,σ2)(µ, σ
2) = pµ|σ2(µ|σ2)pσ2(σ2)

with pµ|σ2(µ|σ2) = N(µ0, λ0σ
2) and pσ2(σ2) = IG(A0, B0). Imposing the product den-

sity restriction q(µ,σ2)(µ, σ
2) = qµ(µ)qσ2(σ2) leads to independent Normal marginal posterior

qµ(µ) and Inverse-Gamma marginal posterior qσ2(σ2). However, not imposing the product

density restriction in this case leads to the bivariate Normal-Inverse-Gamma joint posterior

qµ|σ2(µ|σ2)qσ2(σ2) that reflects a different posterior independence structure. Hence, although

choice of prior and product density restriction is problem-based, caution should be taken in

examining possible correlation between model parameters, because imposing too much fac-

torization than needed risks poor VB approximations if dependencies between the hidden

quantities are necessary. This type of degradation in VB accuracy is noted in Ormerod

and Wand (2010). There is a trade-off between tractability and accuracy with any type of

problem simplification via imposed restrictions.
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2.3 Over-confidence

Underestimation of posterior variance of the VB approximate density has been observed in

different settings such as those in Wang and Titterington (2005), Consonni and Marin (2007),

and Rue et al. (2009). We review a possible reason why the variance of the approximate

posterior given by VB tends to be smaller than that of the true posterior.

As explained previously by (2), a density q(H) is sought to minimize the Kullback-Leibler

divergence between itself and the true joint posterior p(H|y). Upon examination of the form

of the Kullback-Leibler divergence used in the VB method,

DKL(q(H)‖p(H|y)) =

∫
q(H)

(
− log

(
p(H|y)

q(H)

))
dH,

Bishop (2006) points out that, in regions of H space where density p(H|y) is close to zero,

q(H), the minimizer, has to be close to zero also; otherwise the negative log term in the

integrand would result in a large positive contribution to the Kullback-Leibler divergence.

Thus, the optimal q∗(H) tends to avoid regions where p(H|y) is small. The factorized

form of q∗(H) implies that each of the factor q∗-densities in turn tends to avoid intervals

where the true marginal posterior density is small. Thus, the marginal posterior densities

approximated by VB are likely to be associated with underestimated posterior variance and

a more compact shape than the true marginal posterior densities.

2.4 Simple two-component mixture model

For model (1) where g = 1, 2, ..., G, with known hyperparameters τ0, σ
2
τ0
, ψ0, σ

2
ψ0

, a0, b0, α1, α0,

observed data E = {dg} and hidden quantities H = {τ, ψ, σ2, p, {bg}}, imposing the product

density restriction q(H) = q{bg}({bg}) × q(τ,p)(τ, p) × qψ(ψ) × qσ2(σ2) results in q-densities

q{bg}({bg}) =
∏

g qbg(bg) =
∏

g Bernoulli

(
exp(ρ̂1g)

exp(ρ̂1g) + exp(ρ̂0g)

)
, qτ (τ) = N(M̂τ , V̂τ ), qp(p) =

Beta(α̂1, α̂0), qψ(ψ) = N(M̂ψ, V̂ψ), and qσ2(σ2) = IG(â, b̂). Optimal q-densities are found by

employing the following iterative scheme for computing variational parameters.
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i) Set â = G
2

+ a0. Initialize M̂σ−2 = 1, ρ̂0g = ρ̂1g = 0 for each g, and

M̂bg =

 1 if rank(dg) ≥ 0.9G

0 otherwise
for each g,

M̂ψ =

∣∣∣∣ G∑
g=1

dg −
∑

{g:rank(dg)≥0.9G}

dg

∣∣∣∣.
ii) Update

M̂τ ←

∑
g M̂σ−2

(
(1− M̂bg)dg + M̂bg(dg − M̂ψ)

)
GM̂σ−2 + 1

σ2
τ0

M̂ψ ←
∑

g M̂σ−2M̂bg(dg − M̂τ )∑
g M̂bgM̂σ−2 + 1

σ2
ψ0

b̂←1

2

∑
g

 1

GM̂σ−2 + 1
σ2
τ0

+
M̂bg∑

g M̂bgM̂σ−2 + 1
σ2
ψ0


+

1

2

∑
g

(
(1− M̂bg)(dg − M̂τ )

2 + M̂bg(dg − M̂τ − M̂ψ)2
)

+ b0

M̂σ−2 ← â

b̂

ρ̂1g ←
−M̂σ−2

2

 1

GM̂σ−2 + 1
σ2
τ0

+
1∑

g M̂bgM̂σ−2 + 1
σ2
ψ0

+ (dg − M̂τ − M̂ψ)2

+ ̂log p

ρ̂0g ←
−M̂σ−2

2

 1

GM̂σ−2 + 1
σ2
τ0

+ (dg − M̂τ )
2

+ ̂log(1− p)

M̂bg ←
exp(ρ̂1g)

exp(ρ̂1g) + exp(ρ̂0g)
.

iii) Repeat ii) until the increase in

Cq(y) =
∑
g

−1

2
log(2π)− M̂σ−2

2
× (1− M̂bg)

 1

GM̂σ−2 + 1
σ2
τ0

+ (dg − M̂τ )
2


− M̂σ−2

2
× M̂bg

 1

GM̂σ−2 + 1
σ2
τ0

+
1∑

g M̂bgM̂σ−2 + 1
σ2
ψ0

+ (dg − M̂τ − M̂ψ)2


−
∑
g

{
M̂bg log M̂bg + (1− M̂bg) log(1− M̂bg)

}
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+ log

(
Beta

(∑
g

M̂bg + α1,
∑
g

(1− M̂bg) + α0

))
− log (Beta(α1, α0))

+
1

2

log

 1

GM̂σ−2 + 1
σ2
τ0

− log σ2
τ0

+ 1−

1

GM̂σ−2 + 1
σ2
τ0

+
(
M̂τ − τ0

)2
σ2
τ0



+
1

2

 log

 1∑
g M̂bgM̂σ−2 + 1

σ2
ψ0

− log σ2
ψ0

+ 1

−

1∑
g M̂bgM̂σ−2 + 1

σ2
ψ0

+
(
M̂ψ − ψ0

)2
σ2
ψ0


+ a0 log b0 − log Γ(a0)−

b0â

b̂
− â log(b̂) + log Γ(â) + â

from previous iteration becomes negligible.

iv) Upon convergence, the remaining variational parameters are computed:

V̂τ ←
1

GM̂σ−2 + 1
σ2
τ0

and V̂ψ ←
1∑

g M̂bgM̂σ−2 + 1
σ2
ψ0

.

Here, we set starting values for M̂bg such that M̂bg = 1 for genes that correspond to the

top 10% of dg values and M̂bg = 0 otherwise. Classification with a different set of starting

values such that M̂bg = 1 for genes that correspond to the top 5% and bottom 5% of dg values

and M̂bg = 0 otherwise leads to almost the same results. In practice, we recommend using

the “top-5%-bottom-5%” scheme of setting starting values for M̂bg in the VB algorithm for

classification with little prior information on location of the mixture component distributions

rather than randomly generating values for M̂bg - empirical evidence suggests that VB with

randomly generated labels does not produce reasonable solutions.
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2.5 Marginal posterior approximation

To investigate we simulated 20,000 values from the simple two-component model (1) with

true values τ = 0, ψ = 20, p = 0.2, bg ∼ Bernoulli(p) i.i.d. for each g, and σ2 = 36. In

the Bayesian analysis τ and ψ were assigned N(0, 100) priors, σ2 an IG(0.1, 0.1) prior, and

p a Beta(0.1, 0.9) prior. Starting values and priors used in VB, MCMC, and the base VB of

GBVA are kept the same for comparison. MCMC was implemented in WinBUGS via R with

1 chain of length 20,000, a burn-in 15,000, and a thinning factor of 10. Figure 1 shows that

VB-approximated marginal posterior densities closely match the MCMC-approximates. In

particular, the posterior mean of {bg} estimated by VB, when plotted against posterior mean

of {bg} estimated by MCMC, almost coincide with the intercept zero slope one reference line,

indicating little difference between VB and MCMC in terms of classification. In fact, with

3972 simulated non-null genes and a 0.8 cutoff for classification, MCMC identified 3303

genes as non-null with true positive rate 0.803 and false positive rate 0.00705, and VB also

detected 3291 genes as non-null with true positive rate 0.800 and the same false positive rate

as MCMC. Moreover, on an Intel Core i5-2430M 2.40GHz, 6GB RAM computer, it took VB

1.26 seconds to reach convergence with a 10−6 error tolerance, whereas MCMC procedure

took about 13 minutes. Both methods are suitable for classification and posterior inference,

with VB demonstrating an advantage in speed, in this example.

The grid-based variational approximations (GBVA) method detailed in Ormerod (2011)

was developed to correct for over-confidence in VB densities. The method involves running

a base VB algorithm and subsequent VB algorithms for density approximation with the aid

of numerical interpolation and integration. For each marginal posterior density of interest,

re-applying VB over a grid of values in GBVA is similar in spirit to re-applying Laplace

approximation in the INLA (Rue et al., 2009) method, and is the key step towards refining the

marginal posterior density approximated by the base VB algorithm. We observe in Figure 1

that, although GBVA appears to correct for underestimation of posterior variance of VB, loss

in accuracy occurs in estimation of posterior mean in comparison with MCMC. Experiments
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with grid selection and precision of numerical methods did not correct the shift in posterior

mean, and a systematic error caused by grid-based calculations of the unnormalized density

is suspected. Although the shifts in posterior mean of GBVA densities observed in Figure 1

are small in scale, for posterior inference the mismatch in mean may incur more serious loss

in accuracy than underestimation of posterior variance of VB densities. Moreover, in the

example, the total run time of GBVA (almost 6 hours) is even larger than that of MCMC

(13 minutes). The undesirable speed of GBVA is due to the fact that refining the marginal

posterior of the latent variable {bg} must go through two iterations, i.e. two grid points 0 and

1, for each one of the G genes. Therefore, in GBVA implementation, this step alone requires

2×G iterations. This example suggests that for a “large p small n” problem, the approach of

calculation over grid values can easily render the GBVA method computationally infeasible.

Figure 1: Approximate marginal posteriors given by MCMC, VB and GBVA for simulated
data under the simple two-component mixture model (1). In the last plot, the posterior mean
of bg, g = 1, .., G is compared between VB and MCMC, and between GBVA and MCMC.
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3 VB for a general finite mixture model

3.1 Motivation

For large-scale problems that involve complex models on high-dimensional data, it is natural

to consider MCMC for approximation of notoriously intractable marginal posterior densities.

However, in many cases implementation of MCMC is impractical. MCMC, because of its

sampling-based nature, becomes cumbersome for hierarchical “large p small n” models where

high-dimensional unknown quantities on various hierarchies are inter-dependent. To achieve

desirable accuracy of MCMC therefore requires (multiple) long chains. Yet convergence

of high-dimensional MCMC chains is difficult to monitor (Cowles and Carlin, 1996), and

optimal MCMC chain settings often have to be determined based on heuristics. Moreover,

in mixture models, an MCMC chain may produce evaluation of a marginal posterior density

that is the same as other chains but associated with different component labels. The label-

switching issue has been noted, for example in De Freitas et al. (2001), Marin and Robert

(2007), and Grimmer (2011). Without correction of label-switching, misleading classification

may arise in cases where multiple chains are used and the MCMC solution, taken as an

average over chains with different or even contrasting labels, is wrong.

A common strategy for improving efficiency in approximation problems is to make sim-

plifying assumptions so that plausible solutions for the complicated problem are obtained

with satisfactory speed and accuracy. This is the motivation behind implementing VB for

approximation of marginal posterior densities for finite mixture models in sparse classifi-

cation problems. In this context, VB is promising in achieving comparable accuracy to

MCMC given limited computational resources, with easy-to-monitor convergence and no

label-switching due to its deterministic nature, in scenarios where MCMC implementation

is unattractive.
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3.2 The B-LIMMA model

We illustrate a VB implementation for a general finite mixture models using a fully Bayesian

version of the LIMMA model introduced by Smyth (2004).

The LIMMA model is designed for testing significance of differential gene expression

in microarray experiments via individual moderated t-tests and posterior log odds ratios.

Model parameters can be estimated via an empirical Bayes approach, from which closed

form test-statistics can be obtained. For a two-sample experimental design, let yijg denote

the normalized log expression of gene g in sample j from treatment group i, where g =

1, ..., G, i = 1, 2, and j = 1, ..., nig. Then dg = ȳ2.g − ȳ1.g represents the observed differential

expression for gene g, and mg =
∑

i

∑nig
j (yijg − ȳi.g)2/fg, where fg = n1g + n2g − 2, is the

mean squared error. A fully Bayesian version of the LIMMA model in this context is the

following hierarchical mixture model:

dg|bg, ψg, σ2
ε,g, τ = τ + bgψg + εg, (4)

mg|σ2
ε,g ∼

σ2
ε,gχ

2
fg

fg
, where fg := n1g + n2g − 2,

ψg|ν, σ2
ε,g ∼ N(0, νσ2

ε,g),

εg|σ2
ε,g ∼ N(0, σ2

g), where σ2
g := σ2

ε,gcg, cg :=
1

n1g

+
1

n2g

,

bg|p ∼ Bernoulli(p) i.i.d., σ2
ε,g ∼ IG (Aε, Bε) i.i.d.,

τ ∼ N
(
µτ0 , σ

2
τ0

)
, ν ∼ IG (Aν , Bν) , p ∼ Bernoulli (α1, α0) .

In this model τ represents the overall mean treatment difference, ψg is the gene-specific

effect of the treatment, and bg is a latent indicator which takes the value 1 if gene g is

non-null, i.e. is differentially expressed in the two treatment groups.

We refer to the above model as the B-LIMMA model. Derivation of the VB algorithm

for the B-LIMMA model, which we refer to as VB-LIMMA, is as follows.

The set of observed data and the set of unobserved data are identified as y and H, re-

spectively. For the B-LIMMA model, y = {{dg}, {mg}} and H = {{bg}, {ψg}, {σ2
g}, τ, ν, p}.
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The complete data log likelihood is

log p(y, H) =
∑
g

log p(dg|bg, ψg, σ2
g , τ) +

∑
g

log p(mg|σ2
g) +

∑
g

log p(ψg|ν, σ2
g)

+
∑
g

log p(bg|p) + log p(τ) + log p(ν) +
∑
g

log p(σ2
g) + log p(p).

In particular, the observed data log likelihood involves

log p(dg|bg, ψg, σ2
g , τ) =

1

2
log
(
2πσ−2g

)
− 1

2σ2
g

[
(1− bg)(dg − τ)2 + bg(dg − τ − ψg)2

]
,

log p(mg|σ2
g) = − log

(
σ2
g

cgfg

)
− log

(
2
fg
2 Γ

(
fg
2

))
+

(
fg
2
− 1

)
log

(
mgcgfg
σ2
g

)
− 1

2

(
mgcgfg
σ2
g

)
.

The product density restriction is imposed such that q(H) = q{bg}({bg}) × q{ψg}({ψg}) ×

q{σ2
g}({σ

2
g})× q(τ,ν,p)(τ, ν, p). Further factorizations are induced by applying (3):

q{bg}({bg}) =
∏
g

qbg(bg), q{ψg}({ψg}) =
∏
g

qψg(ψg),

q{σ2
g}({σ

2
g}) =

∏
g

qσ2
g
(σ2

g), and q(τ,ν,p)(τ, ν, p) = qτ (τ)qν(ν)qp(p).

Then, approximate marginal posterior distributions, with M̂θ denoting the variational poste-

rior mean
∫
θqθ(θ)dθ, and V̂θ denoting the variational posterior variance

∫
(θ − M̂θ)

2qθ(θ)dθ,

are qτ (τ) = N(M̂τ , V̂τ ), qν(ν) = IG(Âν , B̂ν), qp(p) = Beta(α̂1, α̂0), qψg(ψg) = N(M̂ψg , V̂ψg),

qσ2
g
(σ2

g) = IG(Âσ2
g
, B̂σ2

g
), and qbg(bg) = Bernoulli(M̂bg). Updating the q-densities in an iter-

ative scheme boils down to updating the variational parameters in the scheme. Convergence

is monitored via the scalar quantity Cq(y), the lower bound on the log of the marginal data

density

Cq(y) = Eq(H)

{∑
g

log p(dg|bg, ψg, σ2
g , τ) +

∑
g

log p(mg|σ2
g)

+
∑
g

log p(σ2
g)−

∑
g

log q(σ2
g) + log p(τ)− log q(τ)

+
∑
g

log p(ψg|ν, σ2
g) + log p(ν)−

∑
g

log q(ψg)− log q(ν)

+
∑
g

log p(bg|p) + log p(p)−
∑
g

log q(bg)− log q(p)

}
.

It is only necessary to update the variational posterior means M̂· in the iterative scheme.
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Upon convergence, the other variational parameters are computed based on the converged

value of those involved in the iterations. Therefore, the VB-LIMMA algorithm consists of

the following steps:

Step 1: Initialize Âν , B̂ν , {Âσ2
g
}, {B̂σ2

g
}, {M̂ψg}, {M̂bg}.

Step 2: Cycle through M̂τ , B̂ν , {B̂σ2
g
}, {M̂ψg}, {M̂bg} iteratively, until the increase in

Cq(y) computed at the end of each iteration is negligible.

Step 3: Compute V̂τ , {V̂ψg}, α̂1, α̂0 using converged variational parameter values.

4 Numerical Illustrations

4.1 Simulation

The goal of this simulation study is to assess the performance of VB as a classifier when

various model assumptions are correct, and to determine the accuracy of VB approximation

of marginal posterior distributions.

4.1.1 The B-LIMMA model

Under the B-LIMMA model (4), the difference in sample means {dg} and mean squared

errors {mg} are simulated according to model (1) of Bar et al. (2010) with µ = 0 and γg ≡ 0.

VB-LIMMA approximates a marginal posterior density whose mean is then used as posterior

estimate of the corresponding parameter for classification. Performance comparison is made

between VB implemented in R and the widely-used limma (Smyth, 2005) package.

A data set containing G = 5000 genes was simulated under the B-LIMMA model with

n1g ≡ n2g ≡ 8, τ = 0, σ2
g ∼ IG(41, 400) i.i.d., and ψg and bg generated as specified in

model (4). The shape and scale parameter values in the Inverse-Gamma distribution were

chosen such that σ2
g , g = 1, .., G, were generated with mean 10 and moderate variation

among the G genes. We set p, the non-null proportion, and ν, the variance factor such
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that p ∈ {0.05, 0.25}, ν ∈ {1
2
, 2}. Simulations with various sets of parameter values were

investigated, but these values lead to representative results among our experiments. For

classification, a N(0, 100) prior for τ , IG(0.1, 0.1) prior for ν and for σ2
ε,g, and a Beta(1, 1)

prior for the non-null proportion p were used. In the VB-LIMMA algorithm, the error

tolerance was set to be 10−6. The starting values were Âν = B̂ν = 0.1, σ2
ε,g ≡ 1, M̂ψg ≡ 0,

and M̂bg = 1 for genes that are associated with the 5% largest values of dg or the 5% smallest

values of dg, and M̂bg = 0 otherwise. For each gene g, M̂bg was the VB-approximated posterior

mean of the latent indicator bg, i.e. the gene-specific posterior non-null probability. Hence,

for detection of non-null genes, gene ranking based on M̂bg can be compared with gene

ranking based on the B-statistic, or equivalently gene-specific posterior non-null probability

computable from the B-statistic, produced by limma.

We note that, varying the value of ν while keeping σ2
ε,g unchanged in simulation varies

the level of difficulty of the classification problem based on the simulated data. This is

because, the B-LIMMA model specifies that the null component N(τ, σ2
ε,gcg) differs from the

non-null component N(τ, σ2
ε,gcg + νσ2

ε,g) only in variance, and this difference is governed by

the multiplicative factor ν. Therefore, data simulated with large ν tends to include non-null

genes that are far away from mean τ and thus clearly distinguishable from null genes. The

less overlap of the non-null and null component distributions the easier the task of sparse

classification for either method. This is reflected in improved ROC curves for both methods

as ν is changed from 0.5 to 2 in Figures 2 and 3. In fact, in Figures 2 and 3 we also see that

for simulated data with p ∈ {0.05, 0.25}, ν ∈ {1
2
, 2}, classification by VB-LIMMA is almost

identical to classification by limma in terms of ROC curve performance. A cutoff value is

defined such that if M̂bg ≥ cutoff then gene g is classified as non-null. Accuracy is defined

as TP+TN
P+N

and false discovery rate (FDR) as FP
TP+FP

, as in Sing et al. (2007). Focusing on

a practical range of cutoff values, i.e. (0.5, 1), in Figures 2 and 3, we see that accuracy and

FDR of VB are both close to those of limma, and that VB has higher accuracy than limma.

In summary, our experiment suggests that VB-LIMMA, the fully Bayesian classifier, acts as
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a comparable classifier to limma.

Figure 2: limma and VB-LIMMA classification comparison on simulated two-sample data
with G = 5000, n1g ≡ n2g ≡ 8, τ = 0, p ∈ {0.05, 0.25}, ν = 1

2
, σ2

g ∼ IG(41, 400) (i.i.d.).

4.1.2 A mixture model extended from the LIMMA model

The two-component mixture model in Bar et al. (2010) differs from the LIMMA model in

the assumption on the gene-specific treatment effect ψg, specifically

ψg|ψ, σ2
ψ ∼ N(ψ, σ2

ψ) (i.i.d.) (5)

where for the random effect the mean ψ is allowed to be non-zero and the variance σ2
ψ

is assumed to be independent of the gene-specific error variance. This model is referred

to as the LEMMA model in Bar et al. (2010). The LEMMA and LIMMA models both

facilitate simultaneous testing of treatment effects on a large number of genes by “borrowing

strength” across the genes. In Bar et al. (2010), an empirical Bayes approach is adopted in

which parameter estimation of the prior on the error variance σ2
ε,g is accomplished through
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Figure 3: limma and VB-LIMMA classification comparison on simulated two-sample data
with G = 5000, n1g ≡ n2g ≡ 8, τ = 0, p ∈ {0.05, 0.25}, ν = 2, σ2

g ∼ IG(41, 400) (i.i.d.).

maximum marginal likelihood and point estimates of the global parameters are obtained

via the EM algorithm. In the EM algorithm, evaluation of the complete data likelihood

involves integrating over the prior on the error variance σ2
ε,g which is achieved via a Laplace

approximation. In what follows we consider a natural extension to the LEMMA model: a

fully Bayesian three-component mixture model, B-LEMMA. Formulation of the B-LEMMA

model and details of the corresponding VB-LEMMA algorithm are similar to model (4) and

what is outlined in Section 3.2, and are included in supplementary materials.

The computational method in Bar et al. (2010) for estimation via Laplace approxima-

tion and EM algorithm is implemented in the lemma R package (Bar and Schifano, 2010).

We consider an MCMC procedure for the B-LEMMA model so that the performance of

VB-LEMMA for classification is assessed through comparison with MCMC-LEMMA with

reference to lemma.
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A data set containing G = 5000 genes was simulated under the B-LEMMA model using

n1g ≡ 6, n2g ≡ 8, τ = 0, p1 = p2 = 0.1, ψ = 20, σ2
ψ = 2, σ2

g ∼ IG(41, 400) i.i.d., and ψg was

generated based on (5). In the VB-LEMMA algorithm, the error tolerance was set to be

10−6. Starting values were set under the same scheme as the VB-LIMMA algorithm, except

that the parameter ν was replaced by ψ. The posterior mean of ψ, M̂ψ, was initialized as the

average of the absolute difference between the mean of dg and the mean of the 5% largest dg,

and the absolute difference between the mean of dg and the mean of the 5% smallest dg. Non-

informative independent priors were assigned to the global parameters, so that τ and ψ each

had a N(0, 100) prior, σ2
ψ and σ2

g each had an IG(0.1, 0.1) prior, and (p1, p2, 1−p1−p2) had a

Dirichlet(1, 1, 1) prior. For comparison of classification performance, we used the same prior

distributions and starting values in MCMC-LEMMA as in VB-LEMMA. MCMC-LEMMA

was run with 1 chain of length 1,200,000, a burn-in period 1,195,000, and a thinning factor

10. We made this choice of chain length to ensure chain convergence after experimenting

with various chain settings.

Because point estimates suffice for classification, we present VB-LEMMA and MCMC-

LEMMA classification results using posterior means computed from the approximate poste-

rior marginal densities. Genes are classified with a prescribed cutoff value. That is, based

on the mean from the approximate marginal posterior of (b1g, b2g) outputted by the VB-

LEMMA algorithm, M̂b1g ≥ cutoff ⇐⇒ gene g belongs to non-null 1 component, and

M̂b2g ≥ cutoff ⇐⇒ gene g belongs to non-null 2 component. The posterior mean of the

(b1g, b2g) sample for any gene g is calculable from the MCMC samples and is used to classify

gene g with the same cutoff. Point estimates outputted by lemma run with default starting

values are used as a reference for accuracy of point estimates.

On an Intel Core i5-2430M 2.40GHz, 6GB RAM computer, it took lemma, VB-LEMMA,

and MCMC-LEMMA 20.94 seconds, 29.24 seconds, and 25353.88 seconds (7 hours) to run,

respectively. Table 1 shows the lemma point estimates and the approximate marginal pos-

terior means from VB-LEMMA and from MCMC-LEMMA. The parameter estimates from
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the three methods are all close to the true values except for σ2
ψ. The disagreement between

the MCMC-LEMMA and VB-LEMMA estimates of σ2
ψ is also observable in Figure 4 where

the marginal posterior density plots are displayed. In Figure 4, the posterior means of VB-

LEMMA and MCMC-LEMMA agree well with each other and with lemma, since the vertical

lines almost coincide for all parameters except for σ2
ψ. Deviation of the MCMC-LEMMA es-

timate of σ2
ψ 6.993 from the true value 2 renders chain convergence still questionable, despite

the long chain we use. Yet we see in Figure 5, which contains the mixture and component

densities plots, that VB-LEMMA and MCMC-LEMMA appear to identify the correct non-

null 1 and non-null 2 genes since the inward ticks and outward ticks on the x-axis locate at

where the two non-null components truly are in the second and fourth plots. True positive

rate, TPR, is defined as TP1+TP2
P1+P2

and accuracy defined as TP1+TP2+TN
P1+P2+N

, where TP1, TP2,

TN , P1, P2, and N are, respectively, number of correctly labeled non-null 1 genes, number

of correctly labeled non-null 2 genes, number of correctly labeled null genes, number of true

non-null 1 genes, number of true non-null 2 genes, and number of true null genes, such that

in this example P1 + P2 + N = G. Figure 5 and Table 1 confirm that VB-LEMMA and

MCMC-LEMMA classify the genes correctly with high true positive rate and accuracy on

the simulated data.

true lemma VB-LEMMA MCMC-LEMMA
τ 0 -0.00650 0.00432 -0.000682
ψ 20 19.764 19.850 19.737
σ2
ψ 2 5.247 4.278 6.993
p1 0.1 0.105 0.103 0.105
p2 0.1 0.105 0.104 0.105

Number of genes in non-null 1 525 520 508 510
Number of genes in non-null 2 524 516 518 518

TPR NA 0.987 0.977 0.978
Accuracy NA 0.997 0.995 0.995

Table 1: Posterior estimates, deduced number of non-null genes, and TPR and accuracy
for lemma, VB-LEMMA, and MCMC-LEMMA on simulated B-LEMMA data with G =
5000, n1g ≡ 6, n2g ≡ 8, σ2

g ∼ IG(41, 400) (i.i.d.) and cutoff= 0.8.
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Figure 4: Marginal posterior plots approximated by VB-LEMMA and by MCMC-LEMMA,
for the parameters in the B-LEMMA model. For each parameter, the dotted and solid
vertical lines represent the estimated posterior mean by VB and by MCMC respectively, and
the dashed vertical line marks the estimated parameter value given by lemma. The bottom
right plot shows the posterior mean of the gene-specific error variance σ2

g for each gene g,
estimated by VB-LEMMA and by MCMC-LEMMA, and how this quantity varies across the
G genes. The dotted line indicates the prior mean 10 of σ2

g since the prior distribution of σ2
g

are i.i.d. IG(41, 400).

The reason why we implement MCMC-LEMMA with only one chain is that we wish to

avoid the label-switching issue noted in Section 3.1. For MCMC-LEMMA with one chain,

should label-switching occur, ψ would have the opposite sign and the non-null proportions p1

and p2 would exchange positions, leading to classification results in which the labels of non-

null components 1 and 2 are switched. Thus, with a single chain, the label switching issue is

easily resolved. If multiple chains of ψ are run, some will have switched labels. The average of

the MCMC simulated samples would then be misleading. Although using one chain requires

a much longer chain than when multiple chains are used for reaching convergence, it allows

us to distinguish label-switching from non-convergence and easily correct for label-switching

in MCMC-LEMMA output.

One approach to address label-switching issue in mixture models is post-processing of

MCMC solutions. In the B-LEMMA classification problem, once label-switching is detected,
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Figure 5: Approximated densities on simulated data with G = 5000. From left to right: mix-
ture density approximated by VB-LEMMA, the three component densities approximated by
VB-LEMMA, mixture density approximated by MCMC-LEMMA, and the three component
densities approximated by MCMC-LEMMA. On the x-axis in the second and the fourth
plots, inward ticks indicate the classified non-null 1 genes and outward ticks indicate the
classified non-null 2 genes by the corresponding method.

we can post-process MCMC-LEMMA classification results by giving the opposite sign to the

MCMC sample of ψ, switching the p1 sample for the p2 sample and vice versa, and exchanging

the non-null 1 and non-null 2 statuses. To make Figure 6, where performance of VB-LEMMA

and MCMC-LEMMA was recorded for 30 simulated data sets, the data simulation settings

and the settings for the two methods were kept unchanged from the previous experiment,

and MCMC-LEMMA results were post-processed according to the aforementioned scheme

wherever label-switching occurred. Posterior means of σ2
ψ estimated by MCMC-LEMMA

persisted as worse over-estimates than those estimated by VB-LEMMA. Nonetheless, the

component densities plots for the 30 simulated data sets (not shown) with gene labels all

appear similar to those in Figure 5, indicating that both VB-LEMMA and MCMC-LEMMA

are reliable classifiers in this context. However, VB-LEMMA is far superior in terms of

computational efficiency.

Another way of avoiding label-switching issue in mixture models is assigning a prior
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Figure 6: Comparison between VB-LEMMA and MCMC-LEMMA with multiple simulation
on an Intel Xeon L5410 2.33GHz, 8GB RAM computer. 30 data sets were simulated with
same true parameter values in Table 1. MCMC-LEMMA results were post-processed so that
results were corrected for label-switching among the simulated data sets. The dashed lines
mark the true parameter values.

distribution on the parameter that appropriately restricts the sampling process in MCMC,

as Christensen et al. (2011) points out. Although the mixture and component densities plots

(not shown) show that MCMC-LEMMA, when implemented with a half-normal prior on ψ,

classifies the genes satisfactorily, restricting the mean of ψ to a positive value changes the

marginal data distribution of the B-LEMMA model. Therefore, direct comparisons with the

modified MCMC-LEMMA are no longer valid because VB-LEMMA and MCMC-LEMMA

with a half-normal prior on ψ are based on two different models.

These B-LEMMA simulation experiments indicate that VB-LEMMA efficiently and accu-

rately approximates fully Bayesian estimation and classification results. In contrast, MCMC-

LEMMA, although theoretically capable of achieving extremely high accuracy, requires sub-

stantially more work in overcoming issues such as non-convergence and label-switching.
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4.1.3 A mixture model for count data

In mass-spectrometry-based shotgun proteomics, spectral counts measure abundance of pro-

teins under various conditions. By comparing spectral counts under control and treatment

conditions, researchers can test for differential abundance simultaneously for a large number

of proteins. Booth et al. (2011) propose a mixture of log-linear models with random pro-

tein specific factors for classifying proteins into null and non-null (differential abundance)

categories. Their model, which is fully Bayesian, can be written as follows:

yij|µij ∼ Poisson(µij), (6)

log µij|Ii, β0, β1, b0i, b1i = β0 + b0i + β1Tj + b1iIiTj + β2IiTj + logLi + logNj,

Ii|π1 ∼ Bernoulli(π1) i.i.d., bki|σ2
k ∼ N(0, σ2

k) i.i.d., k = 0, 1,

βm ∼ N(0, σ2
βm), m = 0, 1, 2, σ−2k ∼ Gamma(Aσ2

k
, Bσ2

k
), k = 0, 1, π1 ∼ Beta(α, β),

where yij is the spectral count of protein i, i = 1, .., p, and replicate j, j = 1, .., n. Li is the

length of protein i, Nj is the average count for replicate j over all proteins, and

Tj =

 1 if replicate j is in the treatment group

0 if replicate j is in the control group.

In fact, conjugacy in this Poisson GLMM is not sufficient for a tractable solution to be com-

puted by VB. Therefore, a similar Poisson-Gamma HGLM where the parameters βm,m =

0, 1, 2 and the latent variables bki, k = 0, 1 are transformed is used for the VB implementa-

tion:

yij|µij ∼ Poisson(µij), (7)

log µij|Ii, β0, β1, b0i, b1i = β0 + b0i + β1Tj + b1iIiTj + β2IiTj + logLi + logNj,

Ii|π1 ∼ Bernoulli(π1) i.i.d., bki|φki = log(φ−1ki ), k = 0, 1,

φki|δk ∼ IG(δk, δk) i.i.d., k = 0, 1, δk ∼ Gamma(Aδk , Bδk), k = 0, 1,

βm|λm = log(λ−1m ), m = 0, 1, 2, λm ∼ IG(Aλm , Bλm), m = 0, 1, 2, π1 ∼ Beta(α, β).

As before classification is inferred from the posterior expectations of the latent binary

indicators Ii, i = 1, ..., p. This fully Bayesian, two-component mixture model allows for
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derivation of a VB algorithm, VB-proteomics, the details of which are shown in supplemen-

tary materials.

For any real data, the exact model that the data distribution follows is unknown. To

imitate challenges in sparse classification on real data sets, we simulated data from each

of the two models: Poisson GLMM (6) and Poisson-Gamma HGLM (7), and applied VB-

proteomics to both data sets. MCMC-proteomics, also derived based on Poisson-Gamma

HGLM (7), was implemented via OpenBUGS in R with a chain of length 600,000, a burn-in

period 595,000, and a thinning factor 5. Starting values implemented in VB-proteomics were

consistent with those in MCMC-proteomics.

Two data sets, one following the Poisson GLMM (6) with β0 = −7.7009, β1 = −0.1765,

β2 = 0, σ2
0 = 1, σ2

1 = 4 and the other following the Poisson-Gamma HGLM (7) with

λ0 = 2210.336, λ1 = 1.193, λ2 = 1, δ0 = 1, δ1 = 0.2 were generated. In each data set there

were 4 replicates under each treatment and p = 1307 proteins. The non-null indicator was

generated with π1 = 0.2. These values were chosen so that the simulated data sets were

similar to the Synthetic 2-fold data analyzed in Booth et al. (2011).

Poisson GLMM Poisson-Gamma HGLM
true VB MCMC true VB MCMC

number of non-nulls 259 109 96 262 103 90
π1 0.2 0.0856 0.160 0.2 0.122 0.218

accuracy 0.878 0.874 0.871 0.865
time 54 seconds 7.5 hours 10 seconds 7.4 hours

Table 2: Proteomics count data: simulation under the two models and VB-proteomics and
MCMC-proteomics classifications. Total number of proteins is 1307. Cutoff is 0.8. Accuracy
is defined in Section 4.1.1.

Table 2 gives the classification and computational performance of VB-proteomics and

MCMC-proteomics for the two simulated data sets on an Intel Core i5-2430M 2.40GHz,

6GB RAM computer. The longer running time and the larger deviation of posterior mean

of π1 from its true value associated with the simulated data under Poisson GLMM in Table

2 shows that it is indeed more difficult for VB-proteomics to perform classification on data
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from the “wrong” model. Nonetheless, VB-proteomics identifies the extreme proteins for

both data sets with similar accuracy regardless of which model the data was generated from,

and is much more desirable than MCMC-proteomics in terms of computational speed.

Figures 7 and 8 show plots of the log ratios of total counts (+1) in treatment and control

groups against protein number, and ROC curves comparing performance of the model-based

VB-proteomics, MCMC-proteomics approaches with one protein at a time Score tests. These

plots clearly indicate that VB-proteomics acts as a better classifier than individual Score tests

and as a comparable classifier to MCMC-proteomics in terms of ROC curve, accuracy, and

false discovery rate performance.

Figure 7: Simulated data under the Poisson GLMM (6), i.e. the “wrong” model. Top row:
plots of log ratios of total counts in treatment and control groups against protein number
with true non-null proteins, VB-proteomics labeled proteins, and MCMC-proteomics labeled
proteins indicated. Bottom row: ROC curves, accuracy vs. cutoff, and FDR vs. cutoff for
VB-proteomics, MCMC-proteomics, and for one protein at a time score tests. Accuracy and
FDR are as defined in Section 4.1.1.
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Figure 8: Simulated data under the Poisson-Gamma HGLM (7). Top row: plots of log
ratios of total counts in treatment and control groups against protein number with true
non-null proteins, VB-proteomics labeled proteins, and MCMC-proteomics labeled proteins
indicated. Bottom row: ROC curves, accuracy vs. cutoff, and FDR vs. cutoff for VB-
proteomics, MCMC-proteomics, and for one protein at a time score tests. Accuracy and
FDR are as defined in Section 4.1.1.

4.2 Real data examples

In this section, we further illustrate classification performance of VB for fully Bayesian finite

mixture models on real data. Two microarray examples are investigated, the APOA1 (Callow

et al., 2000) and Colon Cancer (Alon et al., 1999) data sets.

4.2.1 APOA1 data

The APOA1 data (Callow et al., 2000) contains 5548 genes associated with measurements

from 8 control mice and 8 “knockout” mice. The data was originally obtained from a two-

groups design. The histogram of dg in Figure 9 indicates that the B-LIMMA model (4) is

29



a good fit and that both limma and VB-LIMMA are applicable for classification, under the

assumption that majority of the genes are null. The small proportion of the non-null genes

is known since there are eight true non-null genes. Figure 10 shows the top 10 non-null genes

by limma. VB-LIMMA was implemented, with non-informative priors and starting values

such that M̂bg = 1 for genes that are associated with the 5% largest values of dg or the 5%

smallest values of dg and M̂bg = 0 otherwise. VB-LIMMA identified the same top eight genes

as limma in 53 seconds, indicated by close-to-one posterior non-null probability estimate of

those genes in Figure 9. The convest function in limma gave an over-estimate of the non-

null proportion p, 0.130114, whereas VB-LIMMA produced a closer estimate 0.00162162 to

the true value 0.00144.

Figure 9: APOA1 data: histogram of dg with the eight non-null genes classified by VB-
LIMMA indicated by inward ticks on the x-axis, and posterior mean of bg (i.e. posterior non-
null probability of gene g) estimated by VB-LIMMA with the eight non-null gene numbers
identified.

4.2.2 Colon Cancer data

The Colon Cancer data (Alon et al., 1999) consists of gene expression values from 2000

genes in 22 controls and 40 treatment samples. Since the two-component mixture model is

a special case of the three-component mixture model with one of the non-null proportions
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Figure 10: limma output: Top 10 genes detected as non-null for APOA1 data. Gene numbers
are shown as row names.

being zero, both B-LIMMA and B-LEMMA models are suitable for classification of genes

on the Colon Cancer data. Therefore, limma, VB-LIMMA, lemma, and VB-LEMMA were

implemented.

A gene rankings table showing genes that are associated with the top 200 largest posterior

non-null probabilities was produced according to results from each of the four procedures.

For all procedures, the posterior non-null probability for any gene equals one minus the

posterior null probability of that gene. Comparing the top genes tables reveals that out of

the top 200 identified non-null genes, limma agrees with VB-LIMMA on 151 genes, lemma

agrees with VB-LEMMA on 190 genes, and all four methods share 140 genes. This high

level of agreement between the procedures shows that fully Bayesian classification via VB is

comparable in accuracy to classification via empirical Bayes approaches on the Colon Cancer

data.

MCMC-LEMMA was also implemented for the Colon Cancer data to illustrate perfor-

mance of MCMC for classification on real data under the B-LEMMA model. A single chain

of length 4,000,000, a burn-in period 3,995,000, and a thinning factor 10 was used to ensure

convergence and avoid label-switching. MCMC diagnostics plots (not shown) suggests that

convergence is tolerable, although it took MCMC-LEMMA 11.7 hours to run on an Intel

Xeon L5410 2.33GHz, 8GB RAM computer. There are 187 genes present in both top 200

genes tables based on MCMC-LEMMA and VB-LEMMA classifications, which shows accu-

racy of VB in classification is comparable with that of MCMC. From the component densities

plots in Figure 11 we see that, the three-component mixture evaluated by VB-LEMMA and
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by MCMC-LEMMA are two different yet plausible solutions based on the B-LEMMA model.

It is unknown which solution is closer to the truth. Nonetheless, with a 0.9 cutoff, MCMC-

LEMMA did not detect any non-null genes, whereas VB-LEMMA identified 56 group 1

non-null genes and 30 group 2 non-null genes in 7 seconds.

Figure 11: From left to right: Histogram of dg for Colon Cancer data, component densities
estimated by VB-LEMMA, and component densities estimated by MCMC-LEMMA. On the
x-axis, inward ticks indicate the classified non-null 1 genes and outward ticks indicate the
classified non-null 2 genes with a 0.9 cutoff.

5 Discussion

VB has been promoted in the statistical and computer science literature as an alternative

to MCMC for Bayesian computation. However, the performance and feasibility of VB has

not been widely investigated for hierarchical mixture models used in sparse classification

problems. This article demonstrates the implementation of VB in that context and shows

that it is capable of efficiently producing reliable solutions with classification performance

comparable to much slower MCMC methods. A known issue with VB is its tendency to

underestimate variability in marginal posteriors. GBVA is designed to correct this, but its
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performance in the context of hierarchical mixture models is not promising either in terms

of accuracy or computational speed.

As the demand for high-dimensional data analysis tools grow the search for fast and

accurate alternatives to MCMC continues to be an important open research area. Other

deterministic alternatives to MCMC in posterior density approximation include EP (Minka,

2001b,a) and INLA (Rue et al., 2009). In EP, while similar factorization of the joint posterior

density to that in VB is assumed, the approximate posterior is found by moment matching

implied by minimization of the reverse form of Kullback-Leibler divergence to that used in

VB theory. However, as noted in Bishop (2006), drawbacks of EP include lack of guarantee

of convergence and failure to capture any mode if the true posterior density is multimodal.

For the class of latent Gaussian models, approximate Bayesian inference can be achieved

via INLA (Rue et al., 2009). The INLA method relies on Gaussian approximations and

numerical methods and bypasses any assumption of factorized density forms. A limitation

of INLA is the fact that models that contain non-Gaussian latent variables in the linear

predictor do not belong to the class of latent Gaussian models for which INLA is applicable.

VB has been criticized (Rue et al., 2009) for its applicability being restricted to the class

of conjugate-exponential (Beal, 2003) models. However, provided that VB is feasible for a

reparameterized model whose inference is close to the original model (Beal, 2003), VB is often

a good approach for fully Bayesian inference because of its relative ease of implementation

and computational speed.
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