## Supplementary Material for Booth et al.

## Derivation of the Score Statistic

Let $y_{k j}$ denote the $j$ th count under treatment $k$, where $k=1, \ldots, K$. Suppose that the counts are independent Poission variates with means given by

$$
\log \mu_{k j}=\beta_{k}+\log L+\log N_{k j},
$$

where $\log L$ and $\log N_{k j}$ are known offsets. The log-likelihood is given by

$$
l(\boldsymbol{\beta})=\sum_{k} \sum_{j}\left(y_{k j} \log \mu_{k j}-\mu_{k j}\right) .
$$

Differentiating the log-likelihood with respect to components of $\boldsymbol{\beta}$ reveals the $k$ th component of the score function, $S(\boldsymbol{\beta})$, to be

$$
\frac{\partial l}{\partial \beta_{k}}=\sum_{j}\left(y_{k j}-\mu_{k j}\right),
$$

Differentiating again reveals the information matrix (the negative Hessian) to be $I(\boldsymbol{\beta})=\operatorname{diag}\left\{\sum_{j} \mu_{k j}\right\}_{k=1}^{K}$.

The score statistic for testing $\beta_{1}=\cdots=\beta_{K}$ is given by $U=\hat{S}^{\prime} \hat{I}^{-1} \hat{S}$, where $\hat{S}$ and $\hat{I}$ are the score function and information matrix evaluated at the null ML estimate.

Now, if $\beta_{1}=\cdots=\beta_{K}=\beta$ say, then

$$
\frac{\partial l}{\partial \beta}=\sum_{k} \sum_{j}\left(y_{k j}-\mu_{k j}\right) .
$$

Setting this derivative shows that the null ML estimate satisfies, $\bar{y}=e^{\hat{\beta}} L \bar{N}$, from which it follows that the null fitted values are given by

$$
\hat{\mu}_{k j}=\frac{N_{k j}}{\bar{N}} \bar{y}
$$

Thus, the score statistic is given by

$$
U=\sum_{k=1}^{K} \frac{\left[\sum_{j}\left(y_{k j}-\frac{N_{k j}}{N} \bar{y}\right)\right]^{2}}{\sum_{j} \frac{N_{k j}}{N} \bar{y}} .
$$

When $K=2$ we can use the fact that $\bar{y}=\left(n_{1} \bar{y}_{1}+n_{2} \bar{y}_{2}\right) / n$ to show that

$$
\sum_{j}\left(y_{1 j}-\frac{N_{1 j}}{\bar{N}} \bar{y}\right)=\frac{n_{1} n_{2}}{n \bar{N}}\left(\bar{N}_{2} \bar{y}_{1}-\bar{N}_{1} \bar{y}_{2}\right)=\sum_{j}\left(y_{2 j}-\frac{N_{2 j}}{\bar{N}} \bar{y}\right)
$$

and so the score statistic can be rewritten as

$$
U=\frac{n\left[\sum_{j}\left(y_{1 j}-\frac{N_{1 j}}{N} \bar{y}\right)\right]^{2}}{\frac{n_{1} \bar{N}_{1}}{N} \frac{n_{2} \bar{N}_{2}}{N} \bar{y}} .
$$

## R code for Model 3

\#Set working directory/folder. This folder should contain this R file, \#the data file in the required format, and the file "proteomics.bug"
\#Load the following packages.
library (coda)
library(BRugs)
library (R2WinBUGS)
\# 1. Read in data
\# 2. Format data for OpenBUGS
\# 3. Function to generate initial values for OpenBUGS
\# 4. Set the parameters (MCMC chains) to be saved
\# 5. Call OpenBUGS
\# 6. Extract results and write to file
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\# 1. Read in data
\# Comma separated data file with variables: Protein, Length, W1,...,Wk, \# M1,.., Mk, where W1 denotes 1st wildtype replicate count and M1 denotes \# the 1st mutant replicate df=read.table("Syntheticdataset2fold.csv", sep=", ", header = TRUE)

```
#########################################################################
# 2. Format data for OpenBUGS
P=df[,1] # P should be the Protein names (first column)
L=as.numeric(df[,2]) # L should be the length (second column)
n=dim(df)[2]-2 # n: the number of replicates (control+treatment)
Y=as.matrix(df[,3:(3+n-1)]) # the response columns
p=dim(Y)[1] # p: the number of proteins
N=apply(Y,2,mean) # N: the average count for each replicate
logL=log(L)
logN=as.numeric(log(N))
G=rep(c(-1,1), each=n/2)# assumes equal number of ctrl and trt reps
data=list(Y=Y,G=G,logL=logL, logN=logN,p=p,n=n) # the data for OpenBUGS
```

```
#########################################################################
# 3. Function to generate initial values for OpenBUGS
inits=function(){list(
    I = rep(0,p), # Indicator for treatment effect
    b0 = rnorm(p,0,1), # protein specific random effects
    b1 = rnorm(p,0,1),
    tau0 = 1, # precision b0
    psi1 = 0, # mean b1
    tau1 = 1, # precision b1
    beta0 = -log(mean(L)), # fixed intercept
    beta1 = 0, # fixed effect for treatment
    pi1 = 0.1 # prob for prior on nonnull status
    )}
#########################################################################
# 4. Set the parameters (MCMC chains) to be saved
parameters=c("I", "tau0", "psi1", "tau1", "beta0", "beta1", "pi1")
```


## \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

```
\# 5. Call OpenBUGS
\# model = "the path where the bugs model can be found"
\# n.chains \(=\) how many mcmc chains to run (3 recommended)
\# n.iter \(=\) the total number of iterations to run
\# n.burnin \(=\) the number of iterations to burnin
\# n.thin \(=\mathrm{k}\); every kth iteration will be saved
\# debug = TRUE; if TRUE, any error messages will be displayed
ms.sim=bugs(data, inits, parameters,
model="proteomics.bug", \# file containing BUGS language
n. chains \(=3\), n. iter=10000, n.burnin=5000, n.thin=5,
debug=TRUE,DIC=FALSE, program="OpenBUGS",
codaPkg=TRUE, save.history=FALSE)
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\# 6. Extract results and write to file
X=ms.sim\$sims.matrix
I.mean=apply (X[, 1:p], 2, mean \()\)
```

```
write.table(data.frame(Protein=P,Prob=I.mean),
    "bugs_output.csv", sep=", ",row.names=F)
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

BUGS language for Model 3 ("proteomics.bug")

```
model
{
    for (i in 1:p)
    {
        for (j in 1:n)
        {
        mu[i,j]<-exp(beta0+beta1*G[j]+b0[i]+b1[i]*G[j]*I[i]+logL[i]+logN[j])
        Y[i,j] dpois(mu[i,j])
    }
    b0[i] ~dnorm(0,tau0)
    b1[i] ~dnorm(psi1,tau1)
    I[i] ~dbern(pi1)
    }
    pi1~dunif(0,1)
    beta0~}\mp@subsup{~}{norm(0,.01)}{~
    beta1~dnorm(0,.01)
    tau0~}\mathrm{ dgamma(0.1,0.1)
    psi1~dnorm(0,0.1)
    tau1~dgamma(0.1,0.1)
}
```



Figure 3: ROC plots comparing the performance of one-at-a-time tests with Bayesian methods 1-3 based on posterior odds of non-null status, and pseudoBayes factors as described in Choi et al. (2008), over the entire range of false positive rates. Figure 3a gives ROC curves for the sythetic spiked 2-fold data (Choi et. al, 2008). Figure 3b gives the corresponding curves for the CPTAC human-yeast dataset (Paulovich et al., 2010).


Figure 4: Relative abundance plot of the CPTAC human-yeast dataset (Paulovich et al., 2010) showing down-regulation in non-null proteins in the D-sample (Figure 4a). Figure 4b shows ROC plots comparing the performance of one-at-a-time tests with Bayesian methods 1-3 based on posterior odds of non-null status, and pseudo-Bayes factors as described in Choi et al. (2008).

