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In many fields, researchers are interested in large and complex biological
processes. Two important examples are gene expression and DNA methyla-
tion in genetics. One key problem is to identify aberrant patterns of these
processes and discover biologically distinct groups. In this article we develop
a model-based method for clustering such data. The basis of our method in-
volves the construction of a likelihood for any given partition of the subjects.
We introduce cluster specific latent indicators that, along with some standard
assumptions, impose a specific mixture distribution on each cluster. Estima-
tion is carried out using the EM algorithm. The methods extend naturally to
multiple data types of a similar nature, which leads to an integrated analysis
over multiple data platforms, resulting in higher discriminating power.

1. INTRODUCTION. Epigenetics refers to the study of heritable character-
istics not explained by changes in the DNA sequence. The most studied epigenetic
alteration is cytosine (one of the four bases of DNA) methylation, which involves
the addition of a methyl group (a hydrocarbon group occurring in many organic
compounds) to the cytosine. Cytosine methylation plays a fundamental role in epi-
genetically controlling gene expression, and studies have shown that aberrant DNA
methylation patterning occurs in inflammatory diseases, aging, and is a hallmark
of cancer cells (Rodenhiser and Mann, 2006; and Figueroa et al., 2010). Figueroa
et al. (2010) performed the first large-scale DNA methylation profiling study in hu-
mans, where they hypothesized that DNA methylation is not randomly distributed
in cancer but rather is organized into highly coordinated and well-defined patterns,
which reflect distinct biological subtypes. Similar observations had already been
made for expression data (Golub et al., 1999; Armstrong et al., 2002). Identify-
ing such biological subtypes through abnormal patterns is a very important task as
some of these malignancies are highly heterogeneous presenting major challenges
for accurate clinical classification, risk stratification and targeted therapy. The dis-
covery of aberrant patterns in subjects can identify tumors or disease subtypes and
lead to a better understanding of the underlying biological processes, which in turn
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can guide the design of more specifically targeted therapies. Due to the biological
interaction between methylation and expression, biologists hope to optimize the
amount of biological information about cancer malignancies by borrowing strength
across both platforms. As an example Figueroa et al. (2008) showed that the inte-
gration of gene expression and epigenetic platforms could be used to rescue genes
that were biologically relevant but had been missed by the individual analyses of
either platform separately.

In this article we propose a model-based approach to clustering such high di-
mensional microarray data. In particular we build finite mixture models that guide
the clustering. These types of models have been shown to be a principled statistical
approach to practical issues that can come up in clustering (McLachlan and Bash-
ford, 1988; Banfield and Raftery, 1993; Cheeseman and Stutz, 1995; Fraley and
Raftery, 1998, 2002). The motivating application is the cluster analysis of Figueroa
et al. (2010), which focused on patients with Acute Myeloid Leukemia (AML).
Both methylation and expression data are available and we develop a clustering
method that can be applied to both data types separately. Furthermore we extend
our methodology to facilitate an integrated cluster analysis of both data platforms
simultaneously. Although the methods are designed for these particular applica-
tions we expect that they can be applied to other types of microarray data, such as
ChIP-Chip data.

A lot of attention has been given to classification based on gene expression pro-
files and more recently based on methylation profiles. Siegmund, Laird and Laird-
Offringa (2004) give an overview and comparison of several clustering methods
on DNA methylation data. They point out that among biologists, agglomerative
hierarchical cluster analysis is popular. However, they argue in favor of model-
based clustering methods over nonparametric approaches and propose a Bernoulli-
lognormal model for the discovery of novel disease subgroups. This model had
previously been applied by Ibrahim, Chen and Gray (2002) to identify differen-
tially expressed genes and profiles that predict known disease classes. More re-
cently Houseman et al. (2008) proposed a Recursively Partitioned Mixture Model
algorithm (RPMM) for clustering methylation data using beta mixture models (Ji
et al., 2005). They proposed a beta mixture on the subjects and the objective was
to cluster subjects based on posterior class membership probabilities. The RPMM
approach is a model-based version of the HOPACH clustering algorithm developed
in van der Laan and Pollard (2003).

In high dimensional data clustering is often performed on a smaller subset of
the variables. In fact, as pointed out in Tadesse, Sha and Vannucci (2005), using
all variables in high-dimensional clustering analysis has proven to give misleading
results. There is some literature on the problem of simultaneous clustering and vari-
able selection (Friedman and Meulman, 2003; Tadesse, Sha and Vannucci, 2005;
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Kim, Tadesse and Vannucci, 2006). However, most statistical methods cluster the
data only after a suitable subset has been chosen. An example of such practice is
McLachlan, Bean and Peel (2002), where the selection of a subset involves choos-
ing a significance threshold for the covariates. That is also essentially what House-
man et al. (2008) and Figueroa et al. (2010) did, but they selected a subset of the
most variable DNA fragments. In this paper we present an integrated model-based
hierarchical clustering algorithm that clusters samples based on multiple data types
on the most variable features. There is of course a clear advantage of automated
variable selection methods such as in Tadesse, Sha and Vannucci (2005). How-
ever, the implementation of such methods seem far from straightforward and due
to the popularity of hierarchical algorithms among biologists (Kettenring, 2006
concluded that hierarchical clustering was by far the most widely used form of
clustering in the scientific literature), there is a clear benefit in having a simple
hierarchical algorithm that can handle multiple data types.

The article is organized as follows. In Section 2 we describe the features of the
motivating data set. In Section 3 we construct the model as a mixture of Gaussian
densities, which leads to a specific mixture likelihood that serves as an objective
function for clustering. We also introduce individual specific parameters to account
for subject to subject variability within clusters (i.e., the array effect). In Section 4
we present two model-based clustering algorithms. The first algorithm is a hierar-
chical clustering algorithm that can be used to find a good candidate partition. The
second clustering algorithm is an iterative algorithm that is designed to improve
upon any initial partition. The likelihood model can be applied to classification of
new subjects and in Section 5 we describe a discriminant rule for this purpose.
In Section 6 we extend the model to account for multiple data platforms and in
Sections 7 and 8 we apply the methods to real data sets, which involve both methy-
lation and expression data. We conclude the article with a discussion in Section
9.

2. MOTIVATING DATA. The Erasmus data were obtained from AML sam-
ples collected at Erasmus University Medical Center (Rotterdam) between 1990
and 2008 and involve DNA methylation and expression profiles of 344 patient
specimens. For each specimen it was confirmed that> 90% of the cells were blasts
(leukemic cells). Description of the sample processing can be found in Valk et al.
(2004) and data sets are available in GEO, http://www.ncbi.nlm.nih.gov/geo/, with
accession numbers GSE18700 for the methylation data and GSE6891 for the ex-
pression data. The gene expression profiles of the AML samples were determined
using oligonucleotide microarrays (Affymetrix U133Plus2.0 GeneChips) and were
normalized using the rma normalization method of Irizarry et al. (2003). The pro-
cessed data involved 54,675 probe sets and demonstrated a right skewed distri-
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bution of the expression profiles for each subject, see Supplementary Figure 4.
The methylation profiles of the AML samples were determined using high density
oligonucleotide genomic HELP arrays from NimbleGen Systems that cover 25,626
probe sets at gene promoters, as well as at imprinted genes. Briefly, genomic DNA
is isolated and digested by the enzymes HpaII and MspI, separately. While HpaII
is only able to cut the DNA at its unmethylated recognition motif (genomic se-
quence 5’-CCGG-3’), MspI cuts the DNA at any HpaII site whether methylated or
unmethylated. Following PCR, the HpaII and MspI digestion products are labeled
with different fluorophores and then cohybridized on the microarray. This results
in two average signal intensities that measure the relative abundances (in a pop-
ulation of cells) of MspI and HpaII at each probe set. The data are preprocessed
and normalized using the analytical pipeline of Thompson et al. (2008) and the fi-
nal quantity of interest is log(HpaII/MspI). Note that although theoretically HpaII
should always be less than MspI, complex technical aspects that arise during the
preparation and hybridization of these samples may result in an enrichment of the
HpaII signal over that of MspI. Therefore, the log-ratio does not have a one-to-one
correspondence with percent methylation at a given probe set but rather provides
a relative methylation value that correlates with actual percentage value (see lower
left panel of Figure 1).

In what follows, notation will be based on the HELP methylation data. However,
if we abstract away from this particular application, the terminology can be adapted
to other microarray data such as gene expression. Let yij denote the continuous re-
sponse log(HpaIIij/MspIij) for subject i = 1, . . . , n, and probe set j = 1, . . . , G.
Lower values of yij indicate that probe set j has high levels of methylation (in
a population of cells) for subject i, whereas higher values indicate low levels of
methylation. In the upper panel of Figure 1 we see bimodal histograms of the
methylation profiles for two patients in the AML data set along with two com-
ponent Gaussian mixture fits. In Supplementary Figure 5 we see density profiles
for all 344 samples stratified by clusters. There is a large microarray effect in the
methylation data, but we observe that all profiles are either skewed or exhibit a bi-
modal behavior. The lower left panel of Figure 1 shows how the HELP assay cor-
relates with methylation percentages obtained using the more accurate, but much
more expensive, quantitative single locus DNA methylation validation MASS Ar-
ray (see Figueroa et al., 2010). It is clear that the HELP values are forming two
clusters of relatively low or high methylation levels with some noise in the per-
centage range [20%, 80%]. This apparent dichotomization inspires modeling each
individual profile, yi = (yi1, . . . , yiG)

′, with a two component mixture distribu-
tion and normality is assumed for each component due to its flexibility and ease of
implementation. We know of no biological mechanism that would imply normal-
ity, however the assumption gives consistent and reasonable fits of the individual
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FIG 1. Upper panel: A histogram of the log signal ratio, log(HpaII/MspI), for patients number 41
and 42 in the Erasmus data set, along with two component Gaussian mixture fits. Lower panel:
Left graph shows HELP methylation values plotted against more accurate MASS array methylation
percentages. Right graph shows that the posterior probabilities from a two component Gaussian
mixture classifies probe sets well into low and high methylation.

methylation profiles (see upper panel of Figure 1).

3. MODEL SPECIFICATION. By dichotomizing the methylation process
we can cluster the probe sets into high or low methylation for each patient i by
applying a two component Gaussian mixture model. Let C denote the true partition
of the subject set, [n] = {1, . . . , n}. We assume that on any given probe set j, all
subjects sharing a cluster c ∈ C have the same relative methylation status (high
or low), and introduce for each cluster c a single latent indicator vector, wc =
(wc1, . . . , wcG)

′, with

(1) wcj =

{
1, if j has high methylation for all subjects in cluster c,
0, if j has low methylation for all subjects in cluster c.

It is well known that methylation does exhibit biological variability from individual
to individual. However, it is biologically reasonable to expect consistency in rela-
tive methylation patterns for patients that share the same disease subtype. Define
θi = (µ1i, σ

2
1i, µ2i, σ

2
2i)
′ and assume that the observed data, y = (y′1, . . . ,y

′
n)
′,

given the unobserved methylation indicators, w = (w′1, . . . ,w
′
K)′ (K being the
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number of clusters), arise from the following density:

(2) f(y|w,θ) =
∏
c∈C

∏
i∈c

f(yi|wc,θi),

with

(3) f(yi|wc,θi) =
G∏

j=1

φ(yij |µ1i, σ21i)wcjφ(yij |µ2i, σ22i)1−wcj ,

where φ denotes the normal density and θ = (θ′1, . . . ,θ
′
n)
′. We refer to the den-

sity in (2) as the classification likelihood of the observed data (Scott and Symons,
1971; Symons, 1981; Banfield and Raftery, 1993) and assume µ1i < µ2i for all i.
We interpret θi as the individual specific means and variances of the high and low
methylation probe sets, respectively. Note that this setup is different from the usual
model based clustering setup where we have cluster specific parameters only. How-
ever, due to array effects it is reasonable and in fact necessary to require different
parameters for different subjects. In the upper panel of Figure 1 we see histograms
and fits for two patients that both have chromosomal inversions at chromosome 16,
inv(16) (inversions refer to when genetic material from a chromosome breaks apart
and then, during the repair process, it is re-inserted back but the genetic sequence
is inverted from its original sense). These two patients cluster together under var-
ious clustering algorithms, including the model based algorithm presented below.
However, the two distributions are clearly not equal.

We put a Bernoulli prior on the latent methylation indicators in (1):

(4) f(w) =
∏
c∈C

G∏
j=1

π
wcj

1c π
1−wcj

0c , π0c + π1c = 1,

where π1c and π0c denote the proportions of probe sets that have high and low
methylation, respectively, in cluster c. From (2) and (4) it is clear that the complete
data density is

(5) f(y,w) =
∏
c∈C

G∏
j=1

(
π1c
∏
i∈c

φ(yij |µ1i, σ
2
1i)
)wcj

(
π0c
∏
i∈c

φ(yij |µ2i, σ
2
2i)
)1−wcj

,

and if we integrate out the latent variable w we arrive at the marginal likelihood

(6) LC(Ψ) =
∏
c∈C

G∏
j=1

(
π1c
∏
i∈c

φ(yij |µ1i, σ21i) + π0c
∏
i∈c

φ(yij |µ2i, σ22i)
)
,
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where Ψ = {(π1c)c∈C , (µ1i, σ21i, µ2i, σ22i)i} denotes the set of parameters. This
likelihood can be used as an objective function for determining the goodness of dif-
ferent partitions and the maximization of (6) is carried out with the EM algorithm
of Dempster, Laird and Rubin (1977). Note that LC can be written as a product,∏

c∈C Lc, where Lc denotes the likelihood contribution of cluster c. Thus, maxi-
mizing LC can be achieved by maximizing Lc independently for all c ∈ C. Details
of the maximization algorithm are provided in Appendix B of the Supplementary
Materials.

REMARK 1. The premise of the clustering algorithm presented in Section 4
is to cluster subjects together that have similar methylation patterns. Similarities
across the genome in the posterior probabilities of high/low methylation guide
which subjects are clustered together and thus, if the posterior probability pre-
dictions reflect the data well, the clustering algorithm should perform well. In the
lower right panel of Figure 1 we see that the posterior probabilities of high methy-
lation fit very well with the actual percentage values.

REMARK 2. When we allow for unequal variances σ21i 6= σ22i, the likelihood
in (6) is unbounded and does not have a global maximum. This can be seen by
setting one of the means equal to one of the data points, say µ1i = yij , for some
i, j. Then the likelihood approaches infinity as σ21i → 0+. However, McLachlan
and Peel (2000) using the results of Kiefer (1978) point out that, even though the
likelihood is unbounded, there still exists a consistent and asymptotically efficient
local maximizer in the interior of the parameter space. They recommend running
the EM algorithm from several different starting values, dismissing any spurious
solution (on its way to infinity), and picking the parameter values that lead to the
largest likelihood value.

REMARK 3. Note that the likelihood in (6) is identifiable except for the stan-
dard and unavoidable label switching problem in finite mixture models (see for
example McLachlan and Peel, 2000). Furthermore, there exists a sequence of con-
sistent local maximizers, as G→∞. This becomes more evident if one recognizes
that the expression for a single cluster c can be written as a multivariate normal
mixture

Lc =

G∏
j=1

(
π1cφ(ycj |µ1c,Σ1c) + π0cφ(ycj |µ2c,Σ2c)

)
,

where ycj = (y1j , . . . , yncj)
′, µkc = (µk1, . . . , µknc)

′ and Σkc = diag(σ2ki)
nc
i=1,

k = 1, 2 (assuming for convenience that i = 1, . . . , nc are the members of cluster
c). Standard theory thus applies (see McLachlan and Peel, 2000).
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REMARK 4. The correlation structure of high dimensional microarray data is
complicated and hard to model. Thus we assume independence across variables in
the likelihood (6) even though it may not be the absolutely correct model. However,
we can view (6) as a composite likelihood (see Lindsay, 1988) which yields con-
sistent parameter estimates but with a potential loss of efficiency. The correlations
observed in microarray data are usually mild and involve only a few and relatively
small groups of genes that have moderate or high within-group correlations. In
Supplementary Appendix A we perform a simulation study to get a sense of how
robust our algorithm is to this independence assumption. The results indicate that
with a sparse overall correlation structure in which genes tend to group into many
small clusters with moderate to high within-group correlations, our algorithm is
not affected by assuming independence across variables. However, there is some
indication that with larger groups of genes with very extreme within-group correla-
tions the algorithm will break down. In microarray data such extreme correlation
structures are not to be expected on a global scale and therefore we believe that
the independence assumption is quite reasonable.

4. MODEL-BASED CLUSTERING. Our clustering criterion involves find-
ing the partition that gives the highest maximized likelihood LC as given in (6).
This provides us with a model selector, as we can compare the maximized like-
lihoods of any two candidate partitions. In theory we would like to maximize LC
with respect to all possible partitions of [n] and simply pick the one resulting in the
highest likelihood. However, as this is impossible for even moderately large n we
propose two clustering algorithms. In subsection 4.1 we propose a simple hierar-
chical clustering algorithm, and in subsection 4.2 we propose an iterative algorithm
that is designed to improve upon any initial partition.

4.1. Hierarchical clustering algorithm. In this subsection we describe a sim-
ple hierarchical algorithm that attempts to find the partition that maximizes LC as
given in (6). Heard, Holmes and Stephens (2006) used a similar approach, but they
constructed a hierarchical Bayesian clustering algorithm that seeks the clustering
leading to the maximum marginal posterior probability. The algorithm can be sum-
marized in the following steps:

1. We start with the partition where each subject represents its own cluster,
C1 = {{1}, . . . , {n}}, and calculate the maximized likelihood, LC1 . Note
that this likelihood can be written as a product LC1 =

∏
i L{i} and thus the

first step involves maximizing L{i} for each i = 1, . . . , n. This is achieved
by fitting a two component Gaussian mixture to each of the n individual
profiles. As mentioned in Remark 2 each fit can be obtained by using the
EM algorithm starting from several different initial values and finding a local
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maximum. It is important that the user verifies these initial individual fits
before proceeding with the hierarchical algorithm. For example, by going
through the 344 methylation profile fits of the Erasmus data, one by one,
we observe pleasing fits. The upper panel of Figure 1 gives examples of two
such profile fits.

2. Next we merge the two subjects that leads to the highest value of LC and
denote the maximized likelihood value by LC2 . Note that there are

(
n
2

)
many

ways of merging two subjects at this step. However, since we already ob-
tained fits for L{i}, i = 1, . . . , n, at Step 1, we only need to maximize L{i,i′},
for all pairs (i, i′) and find the pair that maximizes

`C2 = `C1 − (`{i} + `{i′}) + `{i,i′},

where ` denotes the loglikelihood. Even though we are applying several EM
algorithms, the complexity of each algorithm is low since it only involves
two subjects at a time.

3. We continue merging clusters under this maximum likelihood criteria, at
each step making note of the maximized likelihood, until we are left with
one cluster containing all n subjects, Cn = [n]. Among the n partitions that
are obtained we pick the partition that has the highest value of LC . Note that
the likelihood value may either increase or decrease at each step. This pro-
vides us with a method that automatically determines the number of clusters.

It is our experience that the individual parameter estimates (µ1i, σ21i, µ2i, σ
2
2i)i do

not change much at each merging step of the hierarchical algorithm. Thus, if the
initial estimates provide good fits for all the individual profiles the algorithm can be
expected to perform well. Furthermore, by using the individual parameter estimates
at a previous merging step as initial values at the next step, each EM algorithm
converges very quickly, which is essential since the total number of EM algorithms
that are conducted is of the order O(n2). For the data sets that we consider in this
article, the hierarchical algorithm takes anywhere from a couple of minutes to run,
for the smallest data set in Section 8.1 (n = 14), up to a couple of hours for the
Erasmus high dimensional data set of Section 7.1 (n = 344), using a regular laptop.
However, it should be noted that our R code is neither optimized nor precompiled
to a lower level programming language at this stage.

4.2. Iterative clustering algorithm. The hierarchical algorithm results in a par-
tition that serves as a good initial candidate for the true partition. In this subsec-
tion we present an iterative algorithm that is designed to improve upon any initial
partition. We introduce cluster membership indicators for the subjects in order to
develop an EM algorithm for clustering subjects under the assumption of a fixed
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number of clusters. Define for each subject i = 1, . . . , n and cluster c ∈ C

Xic =

{
1, if subject i is in cluster c,
0, otherwise,

and let Xi = (Xic)c∈C . Assume X1, . . . ,Xn are i.i.d. Multinom{1,p = (pc)c∈C},
so the density of X = (X′1, . . . ,X

′
n)
′ is

(7) f(X) =
n∏

i=1

∏
c∈C

pXic
c ,

∑
c∈C

pc = 1.

These cluster membership indicators fully define the partition C and we note that
the classification likelihood in (2) can be written as

(8) f(y|X) =
∏
c∈C

n∏
i=1

f(yi|wc,θi)
Xic .

Multiplying (7) and (8) together and integrating out X we arrive at the marginal
likelihood

(9) f(y;Ψ) =

n∏
i=1

∑
c∈C

pcf(yi|wc,θi),

where Ψ = {(pc)c∈C , (wc)c∈C ,θi = (µ1i, σ
2
1i, µ2i, σ

2
2i)i} involves both the con-

tinuous parameters and the discrete indicators, w, which we now assume are fixed.
We make this assumption because if w is random as in (4) the joint posterior dis-
tribution of (w,X) is highly intractable and an EM algorithm based on (8) would
be problematic.

The likelihood in (9) is that of a finite mixture model and can be maximized
using the EM algorithm. We detail the maximization procedure in Appendix B of
the Supplementary Materials. In short, let X(0) denote the clustering labels corre-
sponding to a candidate partition. Using X(0) as an initial partition we run an EM
algorithm that converges to a local maximum of (9). Once the mixture model has
been fitted, a probabilistic clustering of the subjects can be obtained through the
fitted posterior expectations of cluster membership for the subjects, (E[Xic|y])i,c
(see McLachlan and Peel, 2000). Essentially, a subject will be assigned to the clus-
ter to which it has the highest estimated posterior probability of belonging. We have
found empirically that the derived partition not only results in a higher value of (9)
but also in the objective likelihood (6), but we do not have a theoretical justification
for this. A good clustering strategy is to come up with a few candidate partitions,
with varying numbers of clusters, and run the EM algorithm using these partitions
as initial partitions. Each resulting partition will be a local maximum of (9), but
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we choose the partition with the highest value of the original objective function
(6). Good initial partitions can be found by running the hierarchical algorithm of
subsection 4.1 or applying one of the more standard clustering algorithms.

5. CLASSIFICATION. The construction of a likelihood for any given par-
tition of the subjects also provides a powerful tool for classification. Assume we
have methylation data on n subjects and we know which class each subject belongs
to, i.e. we know the true C. A by-product of maximizing the likelihood in (6) with
the EM algorithm (detailed in the Supplementary Appendix B) is posterior predic-
tions of the latent indicators, (ŵc)c∈C , which we round to either 0 or 1. Given these
estimated methylation indicators the conditional likelihood of a new observation
(yij)j , on the assumption that i ∈ c, is given by

(10) Lc(θi) =

G∏
j=1

φ(yij |µ1i, σ21i)ŵcjφ(yij |µ2i, σ22i)1−ŵcj .

The discriminant likelihood, Lc, is maximized with respect to the individual spe-
cific parameters at

µ̂1i =

∑
j ŵcjyij∑
j ŵcj

, σ̂21i =

∑
j ŵcj(yij − µ̂1i)2∑

j ŵcj
,

µ̂2i =

∑
j(1− ŵcj)yij∑
j(1− ŵcj)

, σ̂22i =

∑
j(1− ŵcj)(yij − µ̂2i)2∑

j(1− ŵcj)
.

By substituting these estimates into (10) we arrive at the following discriminant
rule:

(11) i ∈ c if Lc

(
θ̂i(ŵc)

)
> Lc′

(
θ̂i(ŵc′)

)
for all c′ 6= c.

6. EXTENSION TO MULTIPLE PLATFORMS. In this section we discuss
how to extend the methods of this paper to account for multiple data types as long
as each data type can reasonably be modeled by the model described in Section 3.
For subject i = 1, . . . , n let yijk denote the signal response of the jth variable, j =
1, . . . , Gk, on platform k = 1, . . . ,m. As before we let C denote the true partition
of the n subjects. We assume subjects in a given cluster c ∈ C have identical
activity (methylation, expression, etc.) profiles on each platform k = 1, . . . ,m
independently and define a cluster and platform specific indicator for each variable

wcjk =

{
1, if variable j on platform k is active in cluster c,
0, if variable j on platform k is inactive in cluster c.
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Define wc = (wcjk)j,k and let yi = (yijk)j,k denote the vector of observed activity
profiles of subject i across platforms. Let θi = (µ1ik, σ

2
1ik, µ2ik, σ

2
2ik)

m
k=1 denote

the subject specific mixture parameters. We assume that the observed data, y =
(yT

1 , . . . ,y
T
n )

T , given the unobserved activity indicators, w = (wc)c∈C , arise from
the following density:

f(y|w,θ) =
∏
c∈C

∏
i∈c

f(yi|wc,θi),

where the conditional density of yi, on the assumption that i ∈ c, is given by

f(yi|wc,θi) =

m∏
k=1

Gk∏
j=1

φ(yijk|µ1ik, σ21ik)wcjkφ(yijk|µ2ik, σ22ik)1−wcjk .

We can either assume that the activity indicators for cluster c are fixed as in subec-
tion 4.2, or independent Bernoullis, both across platforms and variables,

f(wc) =

m∏
k=1

Gk∏
j=1

π
wcjk

1ck π
1−wcjk

0ck , π1ck + π0ck = 1,

where π1ck represents the proportions of variables on platform k that are active in
cluster c. The likelihood in this integrated framework is identical to the one given
in (6), except we now have an additional product across platforms k. The methods
presented in Sections 4 and 5 thus extend to multiple platforms in a straightforward
manner.

7. IDENTIFYING SUBTYPES OF AML. Figueroa et al. (2010) performed
the first large-scale DNA methylation profiling study in humans using the Erasmus
data described in Section 2. They clustered patients using hierarchical correlation
based clustering on a subset of the most variable probe sets. Using unsupervised
clustering they were able to classify the patients into known and well character-
ized subtypes as well as discover novel clusters. In subsection 7.1 we report our
clustering results on the data and compare to those of Figueroa et al. (2010). We
ran a cluster analysis on both methylation and expression data separately as well
as an integrative cluster analysis on both platforms simultaneously. In subsection
7.2 we present results from a discriminant analysis study in which we classified an
independent validation data set using the methods of Section 5.

7.1. Clustering results. Figueroa et al. (2010) hierarchically clustered the n =
344 patients (methylation profiles only) on a subset of the 3,745 most variable
probe sets, using 1-correlation distance and Ward’s agglomeration method. These
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TABLE 1
The sensitivity and specificity of the clustering results.

Sensitivity (# of false negatives in parentheses)
subtype COR M E ME
inv(16) [n1 = 28] 0.929(2) 0.964(1) 0.857(4) 0.964(1)
t(15; 17) [n2 = 10] 0.800(2) 0.800(2) 1.000(0) 1.000(0)
t(8; 21) [n3 = 24] 0.917(2) 0.875(3) 0.917(2) 0.958(1)
CEBPA dm [n4 = 24] 0.792(5) 0.917(2) 0.75(6) 1.000(0)
CEBPA Sil [n5 = 8] 0.625(3) 0.875(1) 1.000(0) 1.000(0)
11q23 + FAB M5 [n6 = 7] 0.857(1) 0.857(1) 0.714(2) 0.714(2)

Specificity (# of false positives in parentheses)
subtype COR M E ME
inv(16) [n− n1 = 316] 1.000(0) 0.997(1) 0.997(1) 1.000(0)
t(15; 17) [n− n2 = 334] 1.000(0) 1.000(0) 1.000(0) 1.000(0)
t(8; 21) [n− n3 = 320] 0.972(9) 0.994(2) 1.000(0) 0.991(3)
CEBPA dm [n− n4 = 320] 0.988(4) 0.988(4) 0.991(3) 1.000(0)
CEBPA Sil [n− n5 = 336] 1.000(1) 0.997(1) 0.985(5) 0.997(1)
11q23 + FAB M5 [n− n6 = 337] 0.991(3) 0.991(3) 0.991(3) 0.994(2)

were probe sets that exceeded a standard deviation threshold of 1. We ran the hierar-
chical algorithm of subsection 4.1 on the same subset to obtain an initial partition.
Among the 344 candidate partitions, obtained at each merging step, the loglike-
lihood was maximized at K = 17 clusters but to avoid singletons we chose a
partition with K = 16, the same number of clusters Figueroa et al. (2010) chose.
We then applied the iterative algorithm of subection 4.2 in an attempt to improve
upon the initial partition. We denote the resulting partition “M” (Methylation). We
repeated this process separately for the expression data using the 3,370 most vari-
able probe sets, or those that exceeded a standard deviation threshold of 0.5. This
resulted in a partition “E” (Expression) with K = 17 clusters. Finally we repeated
this process jointly on the 3,745 and 3,370 probe sets from the methylation and ex-
pression data, respectively, resulting in the partition “ME” with K = 14 clusters.

Figueroa et al. (2010) identified 3 robust and well-characterized biological clus-
ters and 8 clusters that were associated with specific genetic or epigenetic lesions.
Five clusters seemed to share no known biological features. The three robust clus-
ters corresponded to cases with inversions on chromosome 16, inv(16), and translo-
cations between chromosomes 15 and 17, t(15; 17), and chromosomes 8 and 21,
t(8; 21) (translocations refer to when genetic material from two different chromo-
somes breaks apart and when being repaired, the material from one chromosome is
incorrectly attached to the other chromosome instead and vice versa). The World
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Health Organization has identified these subtypes of AML as indicative of favor-
able clinical prognosis (see for example Figueroa et al., 2010). The remaining 8
clusters included patients with CEBPA double mutations (two different abnormal
changes in the genetic code of the CEBPA gene), CEBPA mutations irrespective of
type of mutation, silenced CEBPA (abnormal loss of expression of CEBPA which
is not due to mutations in the genetic code), one cluster enriched for 11q23 abnor-
malities (any type of change in the genetic code that affects position 23 of the long
arm of chromosome 11) and FAB M5 morphology (specific shape and general as-
pect of the leukemic cell as defined by the French American British classification
system for Acute Leukemias), and four clusters with NPM1 mutations (mutations
in the genetic code of the NPM1 gene). A detailed sensitivity and specificity anal-
ysis of 6 of the above 11 clusters [sample sizes in brackets], inv(16) [n1 = 28],
t(15; 17) [n2 = 10], t(8; 21) [n3 = 24], CEBPA double mutations [n4 = 24],
CEBPA silenced AMLs [n5 = 8], and 11q23 + FAB M5 [n6 = 7], is given in Ta-
ble 1 for the different clustering results. We include the correlation based clustering
result (COR) on the methylation data to compare with “M”. The remaining five of
the 11 biological clusters (CEBPA mutations irrespective of type of mutation and
the four NPM1 mutation clusters) had sensitivity or specificity below 0.5 for all
four clustering results and were thus excluded from the table. We can see that the
model based approach, “M”, is doing better than the correlation based method,
“COR”, for the most part. Aside for sensitivity of t(8; 21) (1 less false negative)
and specificity of inv(16) (1 less false positive) the model based approach has as
good or better sensitivity and specificity. The most striking differences are in the
numbers of false negatives of CEBPA dm and false positives of t(8; 21) where
“M” is doing better. Note also that aside for the sensitivity of 11q23 + FAB M5
and specificity of t(8; 21) the integrated analysis “ME” always does better than the
analyses “M” and “E” separately, with perfect sensitivity and specificity for many
of the clusters. Most notably, the integrative analysis is able to perfectly classify the
CEBPA double mutants even though both “M” and “E” have quite a few false posi-
tives and false negatives. This demonstrates the increased power to identify clusters
by sharing information across multiple platforms. As a side product from our clus-
tering algorithm we obtain posterior probabilities of high methylation/expression,
E[wcj |y], which can be used to order genes in heatmaps to discover subtype spe-
cific methylation/expression patterns. In Figure 2 we see heatmaps of the two data
sets used for the integrative clustering, “ME”, after rows have been ordered by in-
creasing posterior probabilities (one cluster at a time). Such heatmaps are useful
for graphically displaying the distinct methylation/expression patterns that charac-
terize the different subtypes of cancer.
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FIG 2. Heatmaps of the methylation and gene expression values for the 6 well characterized clusters
obtained from the integrative clustering (“ME”). Columns correspond to patient samples and rows
correspond to genes. On the left heatmap “yellow”, “gray”, and “blue” represent low, intermediate,
and high methylation, respectively. On the right heatmap “green”, “black”, and “red” represent low,
intermediate, and high expression, respectively. Rows are ordered by increasing posterior probabili-
ties of high methylation/expression,E[wcj |y], first for inv(16), then for t(8; 21), t(15; 17), CEBPdm,
CEBPsil, and finally for 11q23+M5. Rows with equal probabilities for all 6 clusters (either equal to
1 or 0) are excluded to emphasize differences.

7.2. Classification results. A second cohort of patients with AML was avail-
able with which we could test the performance of the classification method of Sec-
tion 5. This second cohort of n = 383 cases consisted of samples, obtained from
patients enrolled in a clinical trial from the Eastern Cooperative Oncology Group
(ECOG) (Data are available at http://www.ncbi.nlm.nih.gov/geo/, accession num-
ber pending). These patients were similar in characteristics to the Erasmus cohort
with only one exception, all patients were younger than 60 years of age. Samples
were processed in the same way as the Erasmus cohort, and their methylation was
used to blindly predict their molecular diagnosis. Using the 3,745 most variable
probe sets and the clustering result “M” of the previous section we fit the model
(6) on the Erasmus cohort with the EM algorithm. By using the posterior predic-
tions of the methylation indicators we applied the discriminant rule (11) on each
patient in the ECOG data set. Since CEBPA and NPM1 mutation status have not yet
been made available for this cohort, only the performance for the prediction of the
inv(16), t(8; 21), CEBPA silenced, t(15; 17) and 11q23 + FAB M5 clusters could
be tested. Inv(16) cases were predicted with 100% sensitivity and specificity. The
predicted t(8; 21) cluster contained 100% of cases positive for this abnormality,
and only one t(8; 21) case was misclassified to another cluster. Two cases, which
had previously been unrecognized as CEBPA silenced AMLs were predicted by
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TABLE 2
The sensitivity and specificity of the classification result. False negatives and false positives are in

parentheses.

subtype Sensitivity Specificity
inv(16) [n = 32] 1.000(0) 1.000(0)
t(15; 17) [n = 1] 1.000(0) 1.000(0)
t(8; 21) [n = 28] 0.964(1) 1.000(0)
CEBPA Sil [n = 1] 1.000(0) 0.997(1)
11q23 + FAB M5 [n = 14] 0.643(5) 0.986(5)

the classification method. One of them was later confirmed to indeed correspond to
this molecular subtype by an alternative methylation measurement method. Simi-
larly one case was believed to have been misclassified as t(15; 17) since there were
no molecular data confirming the presence of the PML-RARA gene fusion (the
abnormal combination of the PML and RARA genes) resulting from this translo-
cation. However, it was later confirmed that both the morphology and the immune
diagnosis corresponded to that of an acute promyelocytic leukemia with t(15; 17).
Finally, the 11q23+FAB M5 cluster included 9 of the 14 patients in the cohort that
met these two criteria. There were also 5 false positives, 3 of them were M5 cases
but did not have 11q23 abnormalities, 1 of them harbored the 11q23 abnormality
but corresponded to an M1, and the remaining case corresponded to an M4 case
with a hyperdiploid karyotype. Summary of these results is provided in Table 2.

8. OTHER APPLICATIONS. The clustering method presented in this paper
is not restricted to the microarray platforms that the AML samples were processed
on. In this section we demonstrate the versatility of our method by applying it to
other microarray platforms and show that our algorithm does well in clustering
subjects. We also provide a comparison with other existing methods for clustering
microarray data.

8.1. Expression in endometrial cancer. In this subsection we analyze the mi-
croarray expression data set in Tadesse, Sha and Vannucci (2005). Endometrioid
endometrial adenocarcinoma is a gynecologic malignancy typically occuring in
postmenopausal women. Identifying distinct subtypes based on common patterns
of gene expression is an important problem as different clinicopathologic groups
may respond differently to therapy. Such subclassification may lead to discoveries
of important biomarkers that could become targets for therapeutic intervention and
improved diagnosis. High density microarrays (Affymetrix Hu6800 chips) were
used to study expression of 4 normal and 10 endometrioid adenocarcinomas on
7,070 probe sets. Probe sets with at least one unreliable reading (limits of reli-
able detection were set to 20 and 16,000) were removed from the analysis, which
resulted in G = 762 variables. Finally, the data were log-transformed, however
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FIG 3. Left panel: Cluster dendrogram for the 2 normal proliferative ("P") endometria, 2 normal
secretory ("S") endometria, and 10 endometrioid adenocarcinomas ("T"). Right panel: Plot of the
number of clusters against log-likelihood.

unlike Tadesse, Sha and Vannucci (2005) we chose not to rescale the variables by
their range. More details about the data set can be found in Tadesse, Ibrahim and
Mutter (2003) and is publically available at http://endometrium.org.

We hierarchically clustered the samples using the 300 most variable probe sets
and plotted the results in Figure 3. We successfully separated the four normal tis-
sues from the endometrial cancer tissues and the log-likelihood plot suggests that
K = 2. The dendrogram consistently separated the normals and the cancer into
two branches for different variance thresholds. However, if we lowered the thresh-
old too much the loglikelihood was maximized at K = 1. This makes sense as
including many low variability probe sets might mask the true clustering structure.
For comparison, Tadesse, Sha and Vannucci (2005) concluded that K = 3 and
commented that there could possibly be 2 subtypes of endometrial cancer. How-
ever, to our best knowledge this subclustering has not been verified. They also
reported clustering results using the COSA algorithm of Friedman and Meulman
(2003), which like our analysis seemed more suggestive of K = 2.

8.2. Methylation in normal tissues. Houseman et al. (2008) used the RPMM
algorithm to cluster a methylation data set consisting of 217 normal tissues and
compared the performance to that of the HOPACH algorithm of van der Laan and
Pollard (2003). The RPMM analysis was discussed in more detail in Christensen
et al. (2009) and the data made publically available at the GEO depository with ac-
cession number GSE19434 (http://www.ncbi.nlm.nih.gov/geo/). Briefly, DNA was
extracted from the tissues, modified with sodium bisulfite, and processed on the



18 KORMAKSSON ET AL.

Illumina GoldenGate methylation platform. Average fluorescence for methylated
(M ) and unmethylated (U ) alleles were derived from raw data at 1, 505 loci. How-
ever, in this study 1, 413 loci passed the quality assurance procedures. A total of
11 tissue types were available, bladder (n = 5), adult blood (n = 30), infant blood
(n = 55), brain (n = 12), cervix (n = 3), head and neck (n = 11), kidney (n = 6),
lung (n = 53), placenta (n = 19), pleura (n = 18), and small intestine (n = 5).
Houseman et al. (2008) constructed an average “beta” value from raw data, which
they claimed was very close to the quantity M/(M +U) ∈ (0, 1), rendering a beta
distributional assumption (assuming M and U follow a gamma distribution) with
class and locus specific parameters. We however chose to work with the quantity
log(M/U), which fits better with our two component mixture distributional as-
sumption. In order to get a direct comparison with RPMM and HOPACH we used
all 1, 413 loci. In Supplementary Figure 6 we see a plot of cluster number versus
loglikelihood, which is maximized atK = 6 clusters. However, given the relatively
small difference between the loglikelihood values at K = 6, K = 7, and K = 8
one could argue that all three clustering results are worthy of consideration. The
clusters are cross-classified with tissue type in Table 3.

If we compare these results with those obtained with the RPMM algorithm our
result favors few and concise clusters, whereas RPMM is indicative of a total of 23
subclasses of tissues. The HOPACH clustering algorithm was suggestive of K = 9
clusters with 3 of those clusters representing placenta singletons separated from the
main placenta cluster. We present a cross-classification table for both RPMM and
HOPACH in Supplementary Table 6 for comparison (borrowed from Houseman
et al., 2008). Our method perfectly classifies blood, brain, infant blood, kidney,
and placenta. For comparison, after bundling subclusters together, RPMM clas-
sifies blood and infant blood perfectly, and HOPACH classifies infant blood and
placenta perfectly. All three methods have problems distinguishing between blad-
der, cervical, lung, pleural, and small intestine tissues. Overall, our approach seems
to outperform HOPACH, and although Houseman et al. (2008) have demonstrated
that a few of their tissue-specific subclusters (obtained by RPMM) have verifiable
meanings, such as through age difference, it seems that without a further justifica-
tion of such finer substructure in the data our clustering result is more desirable. As
a side note, under the assumption of Houseman et al. (2008) that M and U follow
a gamma distribution it is clear that log(M/U) will not be a mixture of two Gaus-
sian distributions. The favorable clustering result for this data set suggests that the
normality assumption on each mixture component provides a robust and flexible
modeling distribution.

9. DISCUSSION. We have proposed a model-based method for clustering
microarray data. The methods have been demonstrated to work well on expression
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TABLE 3
Cross-classification of our clustering result (K = 8) and tissue type. By merging the top two

clusters, and clusters 3 and 4 we obtain the clustering corresponding to K = 6.

Class Blad Bl Br Cerv Inf bl HN Kid Lung Plac Pleu Sm int
1 5 2 1 53 18 4
2 1
3 6
4 10 1
5 30
6 12
7 55
8 19

data and methylation data separately. An integrated cluster analysis has further
shown the power of combining platforms in a joint analysis. We believe this method
can be applied to a variety of microarray data types. However, further research is
needed to validate the method on different types of data such as ChIP-chip data.

A minor drawback of our method is that it does not allow for automated selection
of variables, but rather relies on pre-filtering the data. However, most biologists are
still relying on simple clustering algorithms such as K-means or standard agglom-
erative algorithms, due to their simplicity in implementation and interpretation.
Thus having a relatively simple and easily implemented hierarchical algorithm that
can integrate multiple platforms and further utilizes the bimodal or skewed struc-
ture of the individual profiles, in a model-based manner, has its advantages. For
example, the hierarchical algorithm automatically determines the numbers of clus-
ters and provides an easily interpretable dendrogram. Also, as a side product we
obtain posterior probabilities of high methylation/expression, E[wcj |y], for each
cluster c and probe set j. By ordering the probe sets with respect to these posterior
probabilities and excluding probe sets that are identical across all clusters we can
explore patterns in heatmaps such as in Figure 2.

One of the novelties of our clustering algorithm is the inclusion of individual
specific parameters, (µ1i, σ21i, µ2i, σ

2
2i)i, into the model of Section 3, which facili-

tates the use of our algorithm even in the presence of extreme microarray effects.
Since the amount of data we have to estimate these parameters (G observations per
subject) highly exceeds the number of subjects (n) the estimation of these parame-
ters has not been a problem. However, it is common practice to treat such individ-
ual specific parameters as random effects. We have established that with conjugate
normal and inverse gamma priors on the above parameters we arrive at a marginal
likelihood intractable for maximization. However, we have verified that through
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such prior specifications we could easily calculate full conditionals in a Bayesian
analysis. A Bayesian approach would also prevent us from having to assume the
methylation indicators, w, are fixed as in the iterative algorithm of subection 4.2.
The reason for that assumption was that the joint posterior distribution of (w,X) is
highly intractable. However, full conditionals for each variable separately are easily
obtained and are that of Bernoulli and Multinomial, respectively. Running a fully
Bayesian analysis might also facilitate an extended algorithm that could include
all variables. One might assume that some variables are informative and follow the
mixture in (6) with prior probability p, wheras other variables are non-informative
with prior probability (1−p) and follow the mixture in (6) with C = [n]. There are
some challenges that arise in implementing such a fully Bayesian model and those
require further research.
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SUPPLEMENTARY MATERIAL

Supplement: SIMULATION AND DETAILS OF EM ALGORITHMS
(http://lib.stat.cmu.edu/aoas/???/???). We perform a simulation study to assess the
performance of our clustering algorithm in the presence of sparse correlation struc-
ture. We also derive the steps involved in maximizing the likelihoods of the several
models presented in this paper.

APPENDIX A: SIMULATION STUDY

In microarray data one sometimes observes groups of genes that are highly cor-
related with each other and can sometimes form functionally meaningful pathways.
However, these gene pathways tend to be limited to a small number of genes lead-
ing to a sparse overall correlation structure. In this appendix we perform a simu-
lation study under the assumption that all of the observed genes form such groups
of genes that have high within-group correlations. The simulation scenarios pre-
sented below are designed to give a sense of how far the correlation structure can
be pushed to the extreme before the algorithm breaks down. All of these scenarios
would be extreme in a biological setting and therefore the results give indication
of how robust the clustering algorithm is to the independence assumption. We end
with a simple simulation under the empirical correlation structure of the HELP
methylation data presented in Section 7.1.

We used as baseline the individual specific estimates of (µ1i, σ21i, µ2i, σ
2
2i)i ob-

tained from the 59 samples that made up the three robust clusters, inv(16), t(8; 21),
and t(15; 17), of our methylation clustering result (“M”) from Section 7 (See pan-
els (1, 1), (1, 3), and (2, 3) of Supplementary Figure 5). For each cluster c = 1, 2, 3
we used the mean of the individual specific proportions estimates (π1i)i∈c to repre-
sent the underlying cluster specific probability of high methylation, π1c. These cal-
culations led to proportions estimates 0.61, 0.59, and 0.59, for the clusters inv(16),
t(8; 21), and t(15; 17), respectively. We let G = 500 be the number of simulated
genes and assumed that the data comprised of a total of G/m groups of m genes
each that exhibited moderate to high within-group correlations. For simplicity the
correlation structure was taken to be the same in all groups of m genes. We per-
formed the simulation for two sceniarios, m = 10 and m = 50, and the simulation
steps are described as follows

1. Simulate for each group c = 1, 2, 3, and each gene j = 1, . . . , 500, indepen-
dently wcj ∼ Bern(π1c).

2. Simulate for each sample i ∈ c, in all clusters c = 1, 2, 3, and each group of
m genes

(12) (yi,j1 , . . . , yi,jm)
′ ∼ N(wc.µ1i + (1−wc.)µ2i,D

1/2
i RD

1/2
i ),
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where wc. = (wc,j1 , . . . , wc,jm)
′, Di = diag(wc.σ

2
1i + (1 − wc.)σ

2
2i), and

the correlation matrix R takes on either an AR(1) structure or compound
symmetry structure with correlation coefficient ρ = 0.7, 0.8, 0.9, or 0.99.

We repeated the above simulation steps 1,000 times and each time we ran the hier-
archical clustering algorithm of Section 4.1 on the simulated data.

For each simulation run we estimated the number of clusters K (by comparing
loglikelihoods of the merging step candidate partitions) and noted how many times
the clustering algorithm correctly estimated K = 3. Additionally, for each sim-
ulation run we cut the dendrogram at K = 3 (regardless of the estimated value
of K) and observed whether or not the resulting clustering perfectly classified the
n = 59 samples into the 3 known clusters. In Table 4 we report the percentages of
simulation runs resulting in K = 3 (out of 1, 000) for the different scenarios. We
note that for m = 10 the clustering algorithm correctly estimated K in vast major-
ity of cases. However, for the scenario where m = 50 the algorithm broke down
when the correlations became too extreme. In Table 5 we report the percentages of
simulation runs resulting in perfect classification when the dendrogram was cut at
K = 3. We observed perfect classification when m = 10 in all cases, but again
observed that the algorithm broke down when the correlations became too extreme
in the scenario where m = 50.

To summarize, our clustering algorithm seems to be robust to the independence
assumption in situations where we have a sparse overall correlation structure in
which genes tend to group into many small clusters with moderate to high within-
group correlations. However, there is indication that with larger groups of genes
with very extreme within-group correlations the algorithm will break down. In
microarray data such extreme correlation structures are not to be expected on a
global scale. In fact when we estimated an empirical correlation matrix (using
the cor.shrink() function from the R-package “corpcor”) for the HELP methyla-
tion data in Section 7.1 we observed that only 0.1% of gene pairs have correlation
> 0.7. As a final simulation we repeated steps 1. and 2. above 1,000 times with
m = 500 and the correlation matrix R taken as the empirical correlation matrix
obtained from 500 randomly chosen columns of the HELP data. The clustering al-
gorithm correctly estimated K = 3 and perfectly classified the subjects into the 3
clusters in all 1,000 cases. With these and the above results we conclude that the
independence assumption in our model seems quite reasonable.

APPENDIX B: EM ALGORITHMS

In this appendix we describe the EM algorithms of subsections 4.1 and 4.2.
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TABLE 4
Percentage of simulation runs (out of 1,000) that estimated correctly K = 3.

Scenario 1 (m = 10) Scenario 2 (m = 50)

ρ AR(1) Compound Symmetry AR(1) Compound Symmetry
0.7 100% 100% 100% 99.5%
0.8 100% 100% 100% 94.8%
0.9 100% 99.9% 100% 76.9%

0.99 99.6% 99.0% 87.1% 14.8%

TABLE 5
Percentage of simulation runs (out of 1,000) that perfectly classified the n = 59 subjects when

dendrogram was cut at K = 3.

Scenario 1 (m = 10) Scenario 2 (m = 50)

ρ AR(1) Compound Symmetry AR(1) Compound Symmetry
0.7 100% 100% 100% 100%
0.8 100% 100% 100% 100%
0.9 100% 100% 100% 99.8%
0.99 100% 100% 99.2% 41.0%

B.1. EM algorithm for hierarchical clustering. It is easy to verify that the
complete data loglikelihood of cluster c under the model in (6) is given by

log f(y,w;Ψ) =
∑
c∈C

G∑
j=1

wcj

{
log π1c +

∑
i∈c

log φ(yij |µ1i, σ21i)
}

+(1− wcj)
{
log π0c +

∑
i∈c

log φ(yij |µ2i, σ22i)
}
,

and the EM algorithm simply involves iterating between the two steps below:

1. E-step. After t iterations we take the expectation of the complete data log-
likelihood with respect to the density f(w|y,Ψ(t)). But this density is easily
derived from (5), and (6), and is that of independent Bernoullis with posterior
expectations

τ
(t)
cj =

π
(t)
1c

∏
i∈c
φ
(
yij |µ(t)1i , σ

2(t)
1i

)
π
(t)
1c

∏
i∈c
φ
(
yij |µ(t)1i , σ

2(t)
1i

)
+ π

(t)
0c

∏
i∈c
φ
(
yij |µ(t)2i , σ

2(t)
2i

) .
Substituting into the complete data loglikelihood we arrive at theQ-function

Q(Ψ|Ψ(t)) =
∑
c∈C

G∑
j=1

τ
(t)
cj

{
log π1c +

∑
i∈c

log φ(yij |µ1i, σ21i)
}

+
(
1− τ (t)cj

){
log π0c +

∑
i∈c

log φ(yij |µ2i, σ22i)
}
.
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2. M-step. The M-step involves maximizing the Q-function with respect to Ψ.
This turns out to be a straightforward task and closed form maximizers exist.
By differentiating with respect to π1c for each c ∈ C and setting to zero we
get the updates

π
(t+1)
1c =

1

G

G∑
j=1

τ
(t)
cj .

Differentiating with respect to µ1i and µ2i for each i ∈ c and setting to zero
leads to

µ
(t+1)
1i =

∑
j τ

(t)
cj yij∑

j τ
(t)
cj

,

µ
(t+1)
2i =

∑
j(1− τ

(t)
cj )yij∑

j(1− τ
(t)
cj )

,

and finally, by differentiating with respect to σ21i and σ22i for each i ∈ c and
setting to zero we get

σ
2(t+1)
1i =

∑
j τ

(t)
cj (yij − µ

(t+1)
1i )2∑

j τ
(t)
cj

,

σ
2(t+1)
2i =

∑
j(1− τ

(t)
cj )(yij − µ

(t+1)
2i )2∑

j(1− τ
(t)
cj )

.

B.2. Two way EM algorithm. In this section we provide details for the EM
algorithm for maximizing the likelihood in (9). From (8) and (7) we arrive at the
complete data loglikelihood

log f(y,X;Ψ) =
∑
c∈C

n∑
i=1

Xic log pc

+
∑
c∈C

G∑
j=1

wcj

n∑
i=1

Xic log φ(yij |µ1i, σ21i)(13)

+
∑
c∈C

G∑
j=1

(1− wcj)
n∑

i=1

Xic log φ(yij |µ2i, σ22i),

and the EM algorithm simply involves iterating between the two steps below
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1. E-step. From (8) and (7) it is clear that the posterior distribution of X is a
product of multinomials

f(X|y) =
n∏

i=1

∏
c∈C

(
pcf(yi|wc,θi)∑
k pkf(yi|wk,θi)

)Xic

.

At a current iterate of the parameter estimates, (w(t)
cj )c,j , (θ

(t)
i )i, and (p

(t)
c )c, we

obtain the posterior expectation of Xic

(14) κ
(t)
ic =

p
(t)
c f(yi|w(t)

c ,θ
(t)
i )∑

k p
(t)
k f(yi|w(t)

k ,θ
(t)
i )

,

and arrive at the Q-function

Q(Ψ|Ψ(t)) =
∑
c∈C

n∑
i=1

κ
(t)
ic log pc

+
∑
c∈C

G∑
j=1

wcj

n∑
i=1

κ
(t)
ic log φ(yij |µ1i, σ21i)

+
∑
c∈C

G∑
j=1

(1− wcj)
n∑

i=1

κ
(t)
ic log φ(yij |µ2i, σ22i).

1∗ Modified E-step. The implementation of the EM algorithm is simplified by
calculating κ(t)ic as defined in (14) for each i, c, but modify the E-step such that
κ
(t)
ic = 1 if κ(t)ic > κ

(t)
ic′ for all c′ 6= c and κ(t)ic = 0 otherwise. Iterating between

the modified E-step and the M-step below results in the so called classification EM
(CEM) algorithm (McLachlan and Peel (2000)), where instead of maximizing the
marginal likelihood we maximize the complete data likelihood.

2. M-step. It is easy to verify that if we differentiate the Q-function with respect
to pc (keeping in mind that

∑
c pc = 1) and set to zero we arrive at the following

updating formula for the cluster membership proportions:

p(t+1)
c =

1

n

n∑
i=1

κ
(t)
ic ,

for all c ∈ C. However, for maximizing the Q-function with respect to (wcj)c,j and
θi = (µ1i, µ2i, σ

2
1i, σ

2
2i)i we need an iterative procedure. This iterative procedure

is identical in nature to the Classification EM mentioned above. The idea is quite
simple, we iterate between the two steps below until convergence is reached and
update the parameters accordingly to (θ

(t+1)
i )i and (w

(t+1)
cj )c,j .
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(a) For a current value of (wcj)c,j the Q-function is maximized at the following
values of the parameters:

µ̂1i =

∑
c κ

(t)
ic

∑
j wcjyij∑

c κ
(t)
ic

∑
j wcj

, σ̂21i =

∑
c κ

(t)
ic

∑
j wcj(yij − µ̂1i)2∑

c κ
(t)
ic

∑
j wcj

,

µ̂2i =

∑
c κ

(t)
ic

∑
j(1− wcj)yij∑

c κ
(t)
ic

∑
j(1− wcj)

, σ̂22i =

∑
c κ

(t)
ic

∑
j(1− wcj)(yij − µ̂2i)2∑

c κ
(t)
ic

∑
j(1− wcj)

.

(b) For current values of (µ̂1i, µ̂2i, σ̂
2
1i, σ̂

2
2i)i the Q-function is maximized at

wcj = 1 or 0 according to whether

n∑
i=1

κ
(t)
ic log φ(yij |µ̂1i, σ̂21i) >

n∑
i=1

κ
(t)
ic log φ(yij |µ̂2i, σ̂22i)

holds or not.

Note that iterating between steps 1∗ (modified E-step) and 2 (M-step) above we are
essentially maximizing the complete data loglikelihood in (13) jointly with respect
to (w,X) and the parameters. The resulting MLEs provide us with information
about the cluster memberships of the subjects and the activity status of the variables
simultaneously. Hence, the name “Two way EM algorithm”.
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FIG 4. Gene expression density profiles of all 344 patients stratified by the expression clustering
result, “E”, of Section 7.
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FIG 5. HELP Methylation density profiles of all 344 patients stratified by the methylation clustering
result, “M”, of Section 7.
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TABLE 6
Cross-classification of the RPMM and HOPACH clustering results and tissue type.

HOPACH
Class Blad Bl Br Cerv Inf bl HN Kid Lung Plac Pleu Sm int

1 30 1
2 55
3 10
4 2 1 10
5 5 2 6 53 18 5
6 1
7 16
8 1
9 1

RPMM
Class Blad Bl Br Cerv Inf bl HN Kid Lung Plac Pleu Sm int
000 3 2 12 8 3
0010 19 5
0011 20 2 1
0100 2 2 1 4 2 2 1

01010 1 4
0101100 3
0101101 3
010111 2
01100 1 1
01101 5
0111 13
1000 3

100100 2
100101 4
1001100 3
1001101 4
100111 5

101 34
1100 18
1101 12

11100 5
11101 3
1111 1 1
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FIG 6. Plot of log-likelihood values versus numbers of clusters for the normal tissue methylation data
of Section 8.2.


